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Dipl.-Inf. Michael Gernoth

Begin: 01.06.2010
End: 08.10.2010



ii



Erklärung
Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung
anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in
gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen
hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle
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Abstract

This work describes the prototypical implementation of the Phantom Anonymiza-
tion Protocol designed by Magnus Br̊ading. The protocol exists to this date only
as a theoretical concept. As it is much needed as a usable program, implementing
a prototype provided a good way to start the transition from theory to practice.

Implementing a theoretical design backs up the theoretical concept and proves
its usability in practice.

I found the design implementable and noted some problems with it. In this
thesis I will discuss my implementation, my findings and problems and then
recommend some further improvements. The work should be seen as the first of
a series of steps bringing Phantom from a theoretical design to a usable tool in
the real world.

v



vi



Contents

1 A Short Overview Over The Phantom Protocol 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Design assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Design goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3.1 Complete decentralization . . . . . . . . . . . . . . . . . . 2
1.3.2 Maximum resistance against all kinds of DoS-attacks . . . 2
1.3.3 Theoretically secure anonymization . . . . . . . . . . . . . 3
1.3.4 Theoretically secure end-to-end encryption . . . . . . . . . 3
1.3.5 Complete virtual isolation from the “normal” Internet . . . 3
1.3.6 Maximum protection against protocol identification . . . . 3
1.3.7 High traffic volume and throughput capacity . . . . . . . . 4
1.3.8 Generic, well-abstracted and backward compatible design . 4

1.4 High level technical view . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.1 Routing paths . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4.2 Routing tunnels . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4.3 Distributed hash table . . . . . . . . . . . . . . . . . . . . 6

2 Implementation 7
2.1 Basic design decisions . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 AP-addresses in IPv6 form . . . . . . . . . . . . . . . . . . 7
2.1.2 One server and one port . . . . . . . . . . . . . . . . . . . 7
2.1.3 Programming language . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Operating system . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Encryption algorithms and hashes . . . . . . . . . . . . . . 8

2.3 Used libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 libopenssl . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.2 libprotobuf-c . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Module overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 Small helper modules . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 config . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 helper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 openssl locking . . . . . . . . . . . . . . . . . . . . . . . . 14

vii



2.5.4 thread pool . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.5 x509 flat . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.6 list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 The Phantom server . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6.1 server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Routing paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7.1 node info . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7.2 conn ctx . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.3 setuppackage.pb-c . . . . . . . . . . . . . . . . . . . . . . . 28
2.7.4 rc4rand . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7.5 path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 Routing tunnels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8.1 tunnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 Distributed kademlia-like hash table . . . . . . . . . . . . . . . . . 38
2.9.1 The kademlia design . . . . . . . . . . . . . . . . . . . . . 38
2.9.2 Kademlia module overview . . . . . . . . . . . . . . . . . . 41
2.9.3 diskcache . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.9.4 kad contacts . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.9.5 Kademlia . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.9.6 kademlia.pb-c . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.9.7 kademlia rpc . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.9.8 netdb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.10 Integration/frontend . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.10.1 phantomd . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.10.2 addr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.10.3 tun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.10.4 main . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.11 Things not implemented . . . . . . . . . . . . . . . . . . . . . . . 52
2.11.1 Non anonymized participation . . . . . . . . . . . . . . . . 52
2.11.2 DHT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.12 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.12.1 Dummy package creation . . . . . . . . . . . . . . . . . . . 53
2.12.2 Deallocation of tunnels . . . . . . . . . . . . . . . . . . . . 53
2.12.3 Missing AP-address for exit nodes . . . . . . . . . . . . . . 54

2.13 Deviations from the original design . . . . . . . . . . . . . . . . . 54
2.13.1 Verification and precalculation of setup arrays . . . . . . . 54

2.14 Further improvements . . . . . . . . . . . . . . . . . . . . . . . . 55
2.14.1 Getting rid of the ping thread . . . . . . . . . . . . . . . . 55
2.14.2 Getting rid of cleanup stack macros . . . . . . . . . . . . 55
2.14.3 DPRNG used for dummy package creation . . . . . . . . . 56
2.14.4 Setup array precalculation . . . . . . . . . . . . . . . . . . 56
2.14.5 Exchange protobuf-c . . . . . . . . . . . . . . . . . . . . . 56
2.14.6 Participation decision . . . . . . . . . . . . . . . . . . . . . 56

viii



2.14.7 Selection of X- and Y-nodes . . . . . . . . . . . . . . . . . 56
2.14.8 IPv6 support . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.14.9 Getting rid of system in phantomd . . . . . . . . . . . . . 57
2.14.10 Better use of the thread pool-module . . . . . . . . . . . . 57
2.14.11 Poll on SSL-sockets . . . . . . . . . . . . . . . . . . . . . . 58
2.14.12 Dynamic module support . . . . . . . . . . . . . . . . . . . 58
2.14.13 Different ciphers, hashes and DPRNGs . . . . . . . . . . . 58
2.14.14 Overall stability . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Evaluation 61
3.1 Path creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Tunnel creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Throughput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Outlook 75

ix





Chapter 1

A Short Overview Over The
Phantom Protocol

1.1 Motivation

The Phantom Protocol[2] was designed in 2008 by Magnus Br̊ading to provide
anonymity for the average Internet user. During the last years there has been
a massive upswing in surveillance and censorship laws not only by unfree states
like the Peoples Republic of China but also in the so-called free western democ-
racies like the United States of America or various states of the European Union.
Together with the fact that more and more traditional communication forms are
replaced by new ones using the Internet, the need for better anonymization tools
becomes more pressing. There have been such tools in the past, the maybe best
known one is the TOR-Project[12] initially released in late 2002. However these
tools have never seen widespread use and there have also been problems[8, 10],
where the leakage of information out of those networks have led to the anonymiza-
tion being broken or where people hosting TOR-services have seen themselves
confronted with massive lawsuits aimed at taking down the TOR-nodes.

With these Problems in mind Magnus Br̊ading specifically designed the Phan-
tom protocol to overcome these flaws.

1.2 Design assumptions

The following three assumptions were made before designing the Phantom pro-
tocol:

1. All traffic of every node in the network is assumed to be eavesdropped on,
but never all nodes involved in the whole network by one party at the same
time.
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2. Arbitrary nodes participating in the network are assumed to be adverse or
compromised by an attacker.

3. The protocol must be free from any trusted or central entity in order to
avoid that this entity can be taken down by lawsuits or other means.

These three design assumptions seem both reasonable and necessary for a large
scale anonymized network, where there are no (or very little) personal contacts
between the participants and so no knowledge about which participants one might
trust. Those three design assumptions lead to some important consequences
regarding the Phantom protocol. First, the resulting network must be completely
decentralized and distributed (if possible among e.g. different jurisdictions or
countries), secondly the protocol must allow to distrust any particular node in
the network and never assume any single chosen node to be “good”. Last but not
least, probabilistically secure algorithms must be used instead of deterministically
secure ones.
Since CPU-power and network bandwidth become increasingly cheaper and more
available, any tradeoff decisions between those two factors on the one hand and
better security or anonymity on the other hand have been made in favor of the
latter two.

1.3 Design goals

With the above mentioned design assumptions and consequences in mind the
Phantom protocol was designed to meet the following eight design goals:

1.3.1 Complete decentralization

If there is a weak point (or weak node for that matter) in the design of the
protocol, it is always the likeliest point to be attacked by anyone interested to
harm the network in any way. Thus all nodes must be equally important and
equally unimportant, no node must be irreplaceable in the network or exposed
in any other way as an attack goal, for that will surely be the point an attacker
will concentrate his resources on. This is not only important from a technical
point of view, but also from a legal point of view. There may be no person more
or less important than any other participant of the network, because this person
will then be chosen as the attacking point for lawsuits or other means of attack.

1.3.2 Maximum resistance against all kinds of DoS-attacks

If Design goal 1. achieves its purpose there will be no single point to attack in
the network, and any attacker will be forced to attack the network as a whole to
be successful. The network must therefore be able to resist these attacks.
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1.3.3 Theoretically secure anonymization

The security of the anonymization provided by the network must be theoretically
provable. There can still be errors in any implementation, but they are usually
easier to fix than a problem with the underlying theoretical design.

1.3.4 Theoretically secure end-to-end encryption

If anyone can eavesdrop the unencrypted communication between two communi-
cation partners, it is highly likely that he can deduce information leading to the
identification of the communication parties. Therefore the communication has to
be encrypted from sender to recipient and back, in order to prevent breaking of
anonymity by an eavesdropper.

1.3.5 Complete virtual isolation from the “normal” Inter-
net

The TOR-project uses so called exit-nodes as proxies to the normal Internet.
The owners of these proxies can be identified and sued if someone from the TOR-
network behind that proxy attacks a target in the “normal” Internet. That poses
a problem for the exit-node providers. Phantom therefore completely separates
its network from the normal Internet. The Phantom network forms an overlay
network, using the infrastructure of the normal Internet, but strictly separates
the contents, so it is not possible for an anonymized vandal to reach any service
in the normal Internet and have some unrelated exit-node provider taking the
blame for it. Anyone is free to make only those select services available to the
anonymized network he wants to. He should do so knowing that no culprit can be
found (by design) if those services are damaged in any way. He is responsible for
offering this service to the anonymized network, if he does not want to take that
chance, he should not make the service reachable from an anonymized network.

1.3.6 Maximum protection against protocol identification

Several ISPs are filtering or shaping down traffic they do not like or shaping
up traffic if they are paid for it. Therefore if a protocol is easily identifiable
and unwanted, it could be dropped by any ISP. This is a potential threat to an
anonymization network, since if a participant cannot be identified and therefore
cannot be coerced to stop using that network, the network can just be dropped
by some/most ISPs in e.g. a certain country and thus be made unavailable to all
people (including the one person one wishes to prevent from using the network).
Therefore the Phantom protocol must not be easily identifiable from the outside,
as no one can selectively drop traffic he cannot distinguish from traffic he does
not want to drop.
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1.3.7 High traffic volume and throughput capacity

Poor performance is a negative trait on any network protocol and must be elim-
inated as far as possible, to make it interesting for many users and applications.
If someone cannot use the anonymization network for the things he wants to do
anonymized, it is useless for him. Furthermore, a distributed design gets better
with more users joining in, so the drawbacks of using the network should be as
small as possible, in order to make the user base big.

1.3.8 Generic, well-abstracted and backward compatible
design

A generic system is in the long run always superior to a specific one (be it only
in numbers of users). A well-abstracted design makes sure that a design mistake
in one part does not make the whole system useless but might be fixed. A
backward compatible design makes it easier for a new protocol to be used with
already existing applications, greatly boosting the acceptance rate and variety of
services offered over the protocol. Phantom aims for complete IP-compatibility
here.

1.4 High level technical view

The Phantom protocol as described in the original paper [2] consists of three
different parts. First a routing path which can be seen as a set of nodes relaying
incoming and outgoing traffic to and from an anonymized node, with a designated
entry or exit node acting as a proxy for incoming or outgoing requests to or
from the anonymized node. Second the routing tunnels which form the logical
equivalent of a point to point connection. It consists of the nodes forming the
entry routing path and the exit routing path of two communication endpoints.
Third a distributed hash table, containing various information, e.g. certificates
and information about the current entry nodes for a given service on a given
anonymized node. Magnus Br̊ading’s paper gives the full details if the reader
is interested, I will only give a very short overview about the different parts in
the next couple of subsections. Readers of this document are strongly advised to
familiarize themselves with Magnus’ design in order to become able to understand
the remainder of this thesis.

1.4.1 Routing paths

A routing path is the central anonymization concept of the Phantom design. It
consists of a number of nodes relaying traffic for the anonymized node who is also
called the owner of the routing path. Routing paths come in two flavors, exit
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paths and entry paths. An exit path is used for outgoing connections into the
Phantom network, an entry path is used to accept incoming connections from the
Phantom network. It is expected that someone interested in content within the
Phantom network would own an exit path, someone providing content an entry
path.

Nodes participating in a Phantom routing path construction process are di-
vided into two groups called X and Y, and according to their membership in one
of these groups called X- or Y-nodes. The X nodes will be in the finished routing
path, the Y nodes are only used to help in construction. A finished routing path
can be thought of as a number of ordered X-nodes like pearls on a string. On the
one end there is the owner of the routing path, then some intermediate X-nodes
and on the other end the terminating X-node which is called the exit node or
entry node depending on the path’s flavor. The string between the individual
pearls (X-nodes) are SSL-connections.

Path construction is done in three steps initiated and controlled by the path’s
owner to be. The first step is preparation, the owner selects other Phantom
nodes he wants to participate in the path and prepares information called setup
packages for these nodes. In the second stage he sends this information to the
selected nodes in a special way as to not disclose his anonymity. The receiving
nodes will act on the received packages by starting to form a routing path. This
step is repeated once with slightly different information. These steps are fully
controlled and strictly verified by the owner of the constructed path. If all goes
well and as expected, the Y-nodes are kicked out of the path and the X-node
form into the string of pearls explained above. The routing path is then finished
and routing tunnels can be created over it. A finished example path can be seen
in 1.1.

X-node X-node X-node exit-nodeowner

Figure 1.1: Example of a finished exit routing path of length three

1.4.2 Routing tunnels

Routing tunnels are used to communicate between two Phantom nodes. They
are built along paths, using them as pre-built infrastructure. So a tunnel can not
exist without a path. Tunnel construction is always initiated by the owner of an
exit path. The request for a new tunnel travels along the exit path until it reaches
the exit node. After receiving this request, the exit node tries to connect to an
entry node. The entry node receiving this connection then sends the request
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along the corresponding entry path whose entry point it is, back to the entry
path’s owner.

The basic connection between the two Phantom nodes has been made. Some
additional data is then exchanged via the paths between the owners and their
terminating nodes to make the tunnel ready for use. After this data exchange,
the tunnel can be seen as a bidirectional point-to-point connection between the
two path owners. Those two can now start to exchange arbitraty data over it,
which will be onion encrypted while travelling through the tunnel. An example
of a finished tunnel can be seen in 1.2. The strings in this picture connecting
the nodes are not the original SSL-connections resulting from the path creation
process but completely new ones, just involving the same nodes.

X-node X-node X-node exit-nodeowner

X-node X-node X-node
entry-
node

owner

Figure 1.2: Example of a finished routing tunnel

1.4.3 Distributed hash table

The distributed hash table (DHT) is used to store information needed by the
protocol. This part is very abstract, yet crucial to the success of the protocol.
At the very least, two kind of information has to be stored within the DHT. A
mapping that makes it possible to get the entry nodes for an AP-address1 and
information describing other Phantom nodes, specifically their IP-addresses and
ports along with their certificates.

1An AP-address is like an IP-address, but anonymized
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Chapter 2

Implementation

2.1 Basic design decisions

2.1.1 AP-addresses in IPv6 form

IPv6 defines unique local addresses in RFC4193 [6]. These addresses are specified
as site-local-addresses so they are not routed globally, which does not pose a
problem. Two prefixes are defined fc00::/8 and fd00::/8. The fc-prefix is proposed
to be managed by a central authority. Once this authority exists and Phantom
starts to see use outside of research laboratories, a block of addresses should be
registered for Phantom with this authority.

In my current implementation I use a /48-block randomly chosen from the
fd-prefix block. This provides enough AP-addresses for testing. Choosing IPv6
addresses as AP-addresses makes Phantom integrateable with all IPv6-enabled
operating systems and IPv6-enabled applications, of which there are already a
lot today and their number is steadily growing.

2.1.2 One server and one port

I have decided to use only one TCP-port for all Phantom related traffic. This
induces difficulties because different traffic types have to be analyzed on arrival
and then dispatched to the different modules handling them. It, however, reduces
the complexity of using Phantom behind packet filters and makes traffic analysis
attacks much harder.

2.1.3 Programming language

I have chosen to implement the prototype in C.
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2.1.4 Operating system

I implemented the prototype for the Linux operating system since I am most com-
fortable and familiar with it. I have tried to match certain standards discussed
in the next section to make porting it to other operating systems easier.

2.2 Standards

I have tried to stick to the POSIX.1-2001-standard. This standard does not
include certain often used functions found within most C-libraries. I have im-
plemented some of these functions myself, except snprintf, I am instead using
sprintf for now. This should be changed before the prototype sees use outside
of controlled environments.

Furthermore I have taken care to write ANSI-C.
I have been using the GNU C compiler1 in version 4.3.2 as my compiler with

the following quite restrictive flags:

Listing 2.1: Compiler flags used

1 −O2 −ans i −D POSIX C SOURCE=200112L
2 −Wall −Werror −Wextra −Wbad−funct ion−ca s t
3 −Wcast−a l i g n −Wcast−qual −Wdeclaration−a f t e r−statement
4 −Wmissing−prototypes −Wpointer−a r i t h −Wshadow
5 −Wstrict−prototypes −Wformat −Wformat−s e c u r i t y −Wunused
6 −Wwrite−s t r i n g s −Waggregate−re turn −pedant ic

In addition, I used the clang static ananlyzer in version 2.8. This is a static code
analysis tool from the llvm project2. The code passes both the compile runs and
the static analysis without any warnings or errors.

2.2.1 Encryption algorithms and hashes

For the prototype implementation I have chosen to use AES256[7] in cipher block
chaining mode, whenever the need for a symmetric block cipher arises. The
onion encryption used when forwarding application data over the tunnels can
obviously not be done with a block cipher, so AES256 in output feedback mode
has been used. Output feedback mode transforms the AES256 block cipher into
a synchronous stream cipher. The SSL-certificates used for testing were 2048-
bit RSA certificates, other sizes should work, too. The path building certificate
generated specifically to be used with one path by the owner node to be, during
path construction is an exception from this rule. It has a fixed size of 2048 bit.
If this size is changed, the implementation of the path module would have to be
changed, too.

1http://gcc.gnu.org
2http://llvm.org/
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All hashes used are SHA-1[1].

2.3 Used libraries

2.3.1 libopenssl

OpenSSL3 is an open source implementation of the SSL and TLS protocols. It
also implements various cryptographic algorithms like symmetric and asymmetric
ciphers or digests. Since it is never a good idea to implement those security
critical algorithms anew, I have chosen to use libopenssl in my implementation.
OpenSSL is available on most UNIX-Systems including the most commonly used
ones (Linux, *BSD, Solaris), Mac OS X and Microsoft Windows. It is the de
facto standard library for open source SSL-Applications. It is available under an
Apache-like license4.

2.3.2 libprotobuf-c

Protobuf-c provides runtime libraries and a code generator for “Protocol Buffers”
in pure C. “Protocol buffers are a flexible, efficient, automated mechanism for seri-
alizing structured data - think XML, but smaller, faster, and simpler. You define
how you want your data to be structured once, then you can use special generated
source code to easily write and read your structured data to and from a variety
of data streams and using a variety of languages. You can even update your data
structure without breaking deployed programs that are compiled against the old
format.”5 Protobuf-c is is available under the “Apache License 2.0”6 The original
protocol buffers implementation under the “New BSD License”7.

This library is used to serialize and deserialize the messages sent among the
participating nodes both during the creation of routing paths and when communi-
cating as a DHT-Node. Using the Protocol Buffers library has several advantages:

1. Its easy to use (see the example below).

2. The message format can later be changed if necessary and the library will
handle it correctly.

3. The protocol buffers are rather lightweight and fast.

4. It avoids the need for “manual” parsing by having the parser code auto-
matically generated.

3http://www.openssl.org
4http://www.openssl.org/source/license.html
5http://code.google.com/apis/protocolbuffers/docs/overview.html
6http://www.apache.org/licenses/LICENSE-2.0
7http://www.opensource.org/licenses/bsd-license.php
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5. It should be quite well tested since it is used for most of Google’s internal
RPC-Code.

However the protocol buffers may also introduce a loophole. During the creation
of the routing paths it is essential that no uncontrolled in band communication
whatsoever can take place between non-neighboring nodes in the routing path.
It might be possible for an attacker to use the protocol buffers to slip some
information to nodes later on in the routing path in order to coordinate a possible
attack. Should this be the case, an alternative to the protocol buffers must be
found. As this is only a proof of concept implementation so far, I have decided
not to burden myself with complex serialization and deserialization and tedious
checks for overflows and such, but left those things to the protocol buffers library.

With protobuf-c one writes a description of the message one wishes to send
in a simple text file and then uses the protoc-c compiler on the file to generate
C-source and header files to compile with the program. Those files mostly declare
and define simple typedef-ed types for the individual messages, as well as pack-,
unpack-, init- and free-functions for these types.

Listing 2.2: Example of a protobuf description file and protobuf-c

1 $ cat protos / kademlia . proto
2 message node in f o {
3 r equ i r ed bytes id = 1 ;
4 r equ i r ed uint32 port = 2 ;
5 r equ i r ed bytes c e r t = 3 ;
6 r equ i r ed s t r i n g ip = 4 ;
7 } ;
8
9 message s t o r e {

10 r equ i r ed bytes key = 1 ;
11 r equ i r ed bytes data = 2 ;
12 r equ i r ed node in f o s e l f = 3 ;
13 } ;
14
15 message s t o r e r e p l y {
16 r equ i r ed bool s u c c e s s = 1 ;
17 } ;
18
19 message f i n d c l o s e n o d e s {
20 r equ i r ed bytes id = 1 ;
21 r equ i r ed node in f o s e l f = 2 ;
22 } ;
23
24 message f i n d c l o s e n o d e s r e p l y {
25 repeated node in f o nodes = 1 ;
26 } ;
27
28 message f i n d v a l u e {
29 r equ i r ed bytes key = 1 ;
30 r equ i r ed node in f o s e l f = 2 ;
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31 } ;
32
33 message f i n d v a l u e r e p l y {
34 r equ i r ed bool s u c c e s s = 1 ;
35 repeated node in f o nodes = 2 ;
36 o p t i o na l bytes data = 3 ;
37 } ;
38
39 $ protoc−c −−c out=/tmp −I . . / protos / . . / protos / kademlia . proto
40 $ l s /tmp/ kademlia . pb−c .∗
41 /tmp/ kademlia . pb−c . c /tmp/ kademlia . pb−c . h

The generated not yet typedef-ed structs look like this and are used in the
obvious way.

Listing 2.3: Example struct generated by protobuf-c
1 struct FindValueReply
2 {
3 ProtobufCMessage base ;
4 p ro tobu f c boo l ean s u c c e s s ;
5 s i z e t n nodes ;
6 NodeInfo ∗∗nodes ;
7 p ro tobu f c boo l ean has data ;
8 ProtobufCBinaryData data ;
9 } ;

In my current implementation I assume that protobuf-c never changes any
data passed to it in one of the generated structs (which seems to be the case
so far). However the generated code does not declare the passed-in parameters
const, as one would expect. If later revisions of this library would start to
change the data passed to it, the current implementation will have to be changed
to handle this correctly.

2.4 Module overview

I have decided to describe the implementation on a per module basis, which can
also serve as a documentation of the existing modules and their interactions for
people interested in continuing my work. My implementation is roughly divisible
in six parts, three of those are the parts of the Phantom protocol as described
before, namely routing paths, routing tunnels and the DHT. The other three
parts are the Phantom server which is used by all three Phantom modules, the
operating system specific integration or frontend part providing the necessary
code to make Phantom usable on a Linux machine and last a group of helper-
modules providing various mostly simple functions that can be used by any other
module. I will try to present the modules in an order in which they can be easily
read one by one, but it lies in the nature of interacting modules that they cannot
be fully explained one after the other and fully independently from each other.
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2.5 Small helper modules

The helper modules are easily described since they just offer simple functionality
or abstract from ugly or uninteresting things. They do not use any of the more
important modules and so make a good starting point to describe the implemen-
tation.

2.5.1 config

The config module reads a configuration file for Phantom and stores its contents
in a struct that is used to present the configuration options at runtime. The struct
is passed to several other modules to provide them with the information needed.
Typically this struct should be a singleton. The module exports two functions,
one to read a configuration from file and store the contents to the struct and one
to free the allocated contents within the struct. Since the struct itself can be
allocated statically (as a singleton), I decided not to allocate it dynamically but
to pass only a pointer to statically preallocated memory to the functions using
it. Consequently the struct itself is not freed by the free-function.

Listing 2.4: The config module’s interface

1 struct c o n f i g {
2 char ∗ ip ;
3 char ∗ k a d n o d e f i l e ;
4 char ∗ kad data d i r ;
5 u i n t 1 6 t port ;
6 u i n t 8 t nxnodes ;
7 u i n t 8 t nynodes ;
8 u i n t 8 t nkeys ;
9 X509 ∗ c o n s t r u c t i o n c e r t i f i c a t e ;

10 struct X509 f l a t ∗ c o n s t r u c t i o n c e r t i f i c a t e f l a t ;
11 EVP PKEY ∗ p r i v a t e c o n s t r u c t i o n k e y ;
12 X509 ∗ c o m m u n i c a t i o n c e r t i f i c a t e ;
13 struct X509 f l a t ∗ c o m m u n i c a t i o n c e r t i f i c a t e f l a t ;
14 EVP PKEY ∗pr ivate communicat ion key ;
15 X509 ∗ r o u t i n g c e r t i f i c a t e ;
16 struct X509 f l a t ∗ r o u t i n g c e r t i f i c a t e f l a t ;
17 EVP PKEY ∗ p r i v a t e r o u t i n g k e y ;
18 } ;
19 void r e a d c o n f i g ( char ∗path , struct c o n f i g ∗ c o n f i g ) ;
20 void f r e e c o n f i g ( struct c o n f i g ∗ c o n f i g ) ;

The members of the struct have the following meaning:

• ip - the ipv4 address of the interface, the server will listen on

• kad node file - the filename of previously stored kademlia contacts

• kad data dir - the directory used to store contents of the DHT locally
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• port - the tcp port the server will listen on

• nxnodes - the number of X nodes used to create a routing path

• nynodes - the number of Y nodes used to create a routing path

• nkeys - the number of keys used per x-node for tunnels

• various certificates and their corresponding private keys stored in both seri-
alized (flat) form and also in their runtime-representation (X509/EVP PKEY)
used by libopenssl. This is done to avoid converting too often from one
format to the other. The filenames of the certificate files as generated by
the openssl tool are found in the config file. The functions used for reading
certificates from file and those to serialize and deserialize them are found
in the helper module.

The config file itself is provided as an XML-file, which makes it parseable very
easily using libxml2. This library is not listed with the used libraries because it
should be simple to read the config manually from a file and fill in the struct –
so it is not really a dependency for the implementation.

2.5.2 helper

The helper module is a collection of various functions written to provide simple
operations not covered by the libc or abstracting from libopenssl and simplifying
its use in the other modules. The following functions are exported from the
module:

Listing 2.5: The helper module’s interface

1 void randomize array ( void ∗base , s i z e t nmemb, s i z e t s i z e ) ;
2 void r e v e r s e a r r a y ( void ∗base , s i z e t nmemb, s i z e t s i z e ) ;
3 X509 ∗ r e a d x 5 0 9 f r o m f i l e ( const char ∗path ) ;
4 void hexdump( const void ∗buf , int s i z e ) ;
5 EVP PKEY ∗ r s a to pkey (RSA ∗ r sa ) ;
6 void s e r i a l i z e 3 2 t ( u i n t 3 2 t t , u i n t 8 t ∗buf ) ;
7 u i n t 3 2 t d e s e r i a l i z e 3 2 t ( const u i n t 8 t ∗buf ) ;
8 void s e r i a l i z e 1 6 t ( u i n t 1 6 t t , u i n t 8 t ∗buf ) ;
9 u i n t 1 6 t d e s e r i a l i z e 1 6 t ( const u i n t 8 t ∗buf ) ;

10 char ∗ i p 4 t o c h a r ( u i n t 3 2 t ip ) ;
11 struct s s l c o n n e c t i o n ∗ c r e a t e s s l c o n n e c t i o n ( const char ∗ ip ,

u i n t 1 6 t port , X509 ∗ cert , EVP PKEY ∗ pr ivkey ) ;
12 struct s s l c o n n e c t i o n ∗ c r e a t e s s l c o n n e c t i o n t m o u t ( const char ∗ ip ,

u i n t 1 6 t port , X509 ∗ cert , EVP PKEY ∗privkey , u i n t 3 2 t tmout ) ;
13 void f r e e s s l c o n n e c t i o n ( struct s s l c o n n e c t i o n ∗ s ) ;
14 void xor ( u i n t 8 t ∗ s1 , const u i n t 8 t ∗ s2 , int l en ) ;
15 void rand bytes ( u i n t 8 t ∗buf , int l en ) ;
16 int s s l r e a d (SSL ∗ s s l , u i n t 8 t ∗buf , u i n t 3 2 t l en ) ;
17 int s s l w r i t e (SSL ∗ s s l , const u i n t 8 t ∗buf , u i n t 3 2 t l en ) ;
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18 u i n t 3 2 t rand range ( u i n t 3 2 t min , u i n t 3 2 t supremum) ;
19 char ∗ p a r s e i p 4 t o c h a r ( const struct in addr ∗ in ) ;
20 char ∗ b in to hex ( const u i n t 8 t ∗bin , int l en ) ;
21 char ∗ strdup ( const char ∗ s ) ;
22 u i n t 8 t ∗ read package (SSL ∗ s s l , u i n t 3 2 t ∗ o u t s i z e ) ;
23 int wri te package (SSL ∗ s s l , u i n t 8 t ∗data , u i n t 3 2 t l en ) ;

Except for the *ssl* and *package*-functions their use and purpose should
be obvious. The *ssl*-functions facilitate the creation and deletion of SSL-
connections as well as blocking reading and writing from or to them. An SSL-
connection is at runtime represented by a struct ssl connection. This struct
holds the SSL-context for libopenssl, the socket for the connection itself and (if
available) the connection-peer’s certificate.

Listing 2.6: struct ssl connection

1 struct s s l c o n n e c t i o n {
2 SSL ∗ s s l ;
3 int socke t ;
4 X509 ∗ p e e r c e r t ;
5 } ;

The create ssl connection*-functions create an SSL-connection to the speci-
fied IPv4-address and TCP-port, using the given certificate and corresponding
private key. The tmout-function can be used to specify a shorter timeout than
the usual TCP-timeout. Unfortunately there is no way to set the timeout directly
for TCP-connection-attempts in Linux. So the socket has to be made nonblock-
ing before the call to connect, then polled for the given timeout. The return
value of poll can be used to determine if the connection attempt succeeded be-
fore the given timeout or if it timed out. After the poll-call the socket is made
nonblocking again, before the SSL-handshake is started.

The write and read functions write size bytes from or read size bytes to
the given buffer. They do either fail or read/write the amount of bytes. In case
of failure this should be considered a hard error mostly and there is no way to
know how much data has been read or written. If this information is necessary,
these functions should not be used. They provide however a nice way to simply
receive a known amount of data or send a known amount of data in a single call
that hides all the quirkiness typical for libopenssl-I/O.

The *package*-functions provide a way to send or receive a given chunk of
data via an SSL-connection. The data is transmitted as is with a prefixed 32-bit
length.

2.5.3 openssl locking

Libopenssl requires multi-threaded applications to provide at least two callback
functions in order to become thread safe. This is what this module does. It
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exports two functions which register or deregister the needed functions and locks
with the library. The start-function should be called after library initialization
but before any calls to libopenssl. The deregister function is used to clean up
once the library is no longer used.

Listing 2.7: The openssl locking module’s interface

1 int i n i t l o c k s ( void ) ;
2 void k i l l l o c k s ( void ) ;

2.5.4 thread pool

The thread pool is an optimization since my implementation is heavily multi-
threaded with many threads only having a short expected lifetime. So to get
around the costly creation of threads, I wrote this module. It creates a number
of threads once and then dispatches functions to idle threads. Arguments can
be passed to this functions in a similar matter than with pthread create. An
additional, optional free func-parameter can be passed that is called on the
passed-in argument once the function has returned. An additional benefit of the
thread pool is, that since no thread creation is done after the initialization, the
creation can not fail. The exported interface of the thread pool module is quite
simple:

Listing 2.8: The thread pool module’s interface

1 struct th read poo l ∗ new thread pool ( int nthreads ) ;
2 int t h r e a d p o o l d i s p a t c h ( struct th read poo l ∗ t , void ∗arg , void

(∗ f r e e f u n c ) ( void ∗) , void (∗ s t a r t f u n c ) ( void ∗) ) ;
3 void f r e e t h r e a d p o o l ( struct th read poo l ∗ t ) ;

Typically there should be one thread pool for the whole application, but it is
also possible to have several fully separated pools. The pool is created by calling
new thread pool passing the number of threads. There is currently no way to
increase or decrease this number later on, so it should be chosen carefully. A call
to free thread pool waits for all threads to terminate and will cause the thread
pool to no longer accept new functions. After the return of all threads they are
terminated and their resources freed.

The thread pool dispatch function is roughly equivalent to pthread create

it must be passed at least the thread pool context to use and a start-function
to be executed by a free thread. Passing a single argument and free-function to
the dispatch-function is optional.

2.5.5 x509 flat

It is necessary, due to the protocol design, to pass X509-certificates between
nodes. Therefore those have to be serialized. As the internal representation of
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X509-certificates within libopenssl is not exported to the user and there are no
functions provided to serialize or deserialize a struct X509 I have chosen to use
the libopenssl-functions which are usually used to write and read certificates to
and from disk. Instead of writing to disk, I write into memory and represent the
serialized or flat certificates as a simple tuple of (bytes, length) which can then be
transmitted over the wire and again transformed into an X509-certificate using
the disk-read functions for certificates. Additional functions are made available
to do various operations on the flat certificates. A total of twelve functions are
exported from this module:

Listing 2.9: The x509 flat module’s interface

1 struct X509 f l a t ∗ new X509 f lat ( void ) ;
2 u i n t 8 t ∗ s e r i a l i z e X 5 0 9 f l a t ( const struct X509 f l a t ∗x ) ;
3 struct X509 f l a t ∗ d e s e r i a l i z e X 5 0 9 f l a t ( const u i n t 8 t ∗ s e r i a l i z e d ) ;
4 void f r e e X 5 0 9 f l a t ( struct X509 f l a t ∗x ) ;
5 struct X509 f l a t ∗ r e a d x 5 0 9 f r o m f i l e f l a t ( const char ∗path ) ;
6 X509 ∗ r e a d x 5 0 9 f r o m x 5 0 9 f l a t ( const struct X509 f l a t ∗ fx ) ;
7 int X 5 0 9 s e r i a l i z e d s i z e ( const struct X509 f l a t ∗x ) ;
8 struct X509 f l a t ∗ f l a t t en X509 (X509 ∗x ) ;
9 int X509 compare (X509 ∗a , X509 ∗b) ;

10 int X509 compare mixed ( struct X509 f l a t ∗a , X509 ∗b) ;
11 int X509 compare f lat ( struct X509 f l a t ∗a , struct X509 f l a t ∗b) ;
12 int X509 hash (X509 ∗c , u i n t 8 t ∗buf ) ;
13 X509 ∗ c l o n e c e r t (X509 ∗x ) ;

The compare, clone, new and free functions should be obvious. The hash

function stores the SHA-1 hash of the certificate in the passed-in buffer. The
read x509 from file flat-function is used by the config module to read the
certificates from disk. The typical calls to serialize and deserialize a given X509-
certificate x would be:

Listing 2.10: Sample code for certificate serialization and deserialization

1 u i n t 8 t ∗ s e r i a l i z e d ;
2 X509 f l a t ∗ f ;
3 /∗on sending hos t ∗/
4 f = f l a t t en X509 ( x ) ;
5 s e r i a l i z e d = s e r i a l i z e X 5 0 9 f l a t ( f ) ;
6 s e nd t o w i r e ( s e r i a l i z e d , X 5 0 9 s e r i a l i z e d s i z e ( f ) ) ;
7 f r e e X 5 0 9 f l a t ( f ) ;
8 f r e e ( s e r i a l i z e d ) ;
9 /∗on r e c e i v i n g hos t ∗/

10 read f rom wire ( s e r i a l i z e d ) ;
11 f = d e s e r i a l i z e X 5 0 9 f l a t ( s e r i a l i z e d ) ;
12 f r e e ( s e r i a l i z e d ) ;
13 x = r e a d x 5 0 9 f r o m x 5 0 9 f l a t ( f ) ;
14 f r e e X 5 0 9 f l a t ( f ) ;
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2.5.6 list

The list module is not a module but simply a header file providing a simple and
efficient list data type purely via preprocessor macros. The list is implemented
as a ring, which makes it easy to append or prepend to the list and saves some
instructions because it eliminates the need to check for the typical cornercases
usually found in list implementations (e.g. Where is the tail pointer?, Is the list
empty right now?, etc.). The two major drawback with this implementation are
that an element can only be in one list at a time and that one needs to declare and
pass two additional pointers of the correct type to the iterator-macros. This could
in theory be avoided but would effectively render the compilers type checking
useless, which seems unwise.

Listing 2.11: Macros defined by the list header file

1 #define LIST in i t ( x ) {( x )−>next=(x )−>prev=(x ) ;}
2 #define LIST is empty ( x ) ( ( x )−>next==(x ) )
3 #define LIST inse r t (x , y ) { ( ( y )−>next=(x )−>next )−>prev=(y ) ;

( ( x )−>next=(y ) )−>prev=(x ) ;}
4 #define L I S T i n s e r t b e f o r e (x , y ) { ( ( y )−>prev=(x )−>prev )−>next=(y ) ;

( ( x )−>prev=(y ) )−>next=(x ) ;}
5 #define LIST remove ( x ) { ( ( x )−>prev )−>next=(x )−>next ;

( ( x )−>next )−>prev=(x )−>prev ;}
6 #define L I S T f o r a l l (x , y , z ) for

( y=(x )−>next , z=(y )−>next ; y !=(x ) ; y=z , z=(y )−>next )
7 #define LIST for a l l backwards (x , y , z ) for

( y=(x )−>prev , z=(y )−>prev ; y !=(x ) ; y=z , z=(y )−>prev )
8 #define LIST clear (x , y ) while ( ( x )−>next !=(x ) ) { y = ∗x . next ;

LIST remove ( y ) ; f r e e ( y ) ;}

A short example program and its output should clarify how this list implemen-
tation is used:

Listing 2.12: Sample code for the list macros

1 #include <s t d i o . h>
2 #include ” l i s t . h”
3
4 struct element {
5 struct element ∗prev ;
6 struct element ∗next ;
7 int data ;
8 } ;
9

10 static void
11 dump l i s t ( const struct element ∗ l i s t , int backwards )
12 {
13 const struct element ∗help1 , ∗help2 ;
14 if ( backwards )
15 LIST fo r a l l backwards ( l i s t , help1 , he lp2 )
16 p r i n t f ( ”%d ” , help1−>data ) ;
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17 else
18 L I S T f o r a l l ( l i s t , help1 , he lp2 )
19 p r i n t f ( ”%d ” , help1−>data ) ;
20 putchar ( ’ \n ’ ) ;
21 }
22
23 int
24 main ( int argc , char ∗∗ argv )
25 {
26 struct element head ;
27 struct element one ;
28 struct element two ;
29 struct element three ;
30 LIST in i t (&head ) ;
31 one . data = 1 ;
32 two . data = 2 ;
33 three . data = 3 ;
34 LIST inse r t (&head , &one ) ;
35 LIST inse r t (&head , &two ) ;
36 LIST inse r t (&head , &three ) ;
37 dump l i s t (&head , 0) ;
38 dump l i s t (&head , 1) ;
39 while ( ! LIST is empty(&head ) ) {
40 LIST remove ( head . prev ) ;
41 dump l i s t (&head , 0) ;
42 }
43 LIST inse r t (&head , &one ) ;
44 dump l i s t (&head , 0) ;
45 L I S T i n s e r t b e f o r e (&head , &two ) ;
46 L I S T i n s e r t b e f o r e (&head , &three ) ;
47 dump l i s t (&head , 0) ;
48 return 0 ;
49 }

Listing 2.13: Sample run of the previous program

1 3 2 1
2 1 2 3
3 3 2
4 3
5
6 1
7 1 2 3

This concludes the helper modules. The other modules are much more complex
and will not only have their interfaces described but I will also discuss their
internal structure and implementation.
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2.6 The Phantom server

The Phantom server is the core module putting all communicating modules to-
gether. I have chosen an approach, where every incoming traffic arrives at the
same listening port, which makes some kind of dispatching necessary and also
poses some problems, which I will discuss later. The Phantom server is imple-
mented as a single module.

2.6.1 server

The basic interface to the server module is quite simple:

Listing 2.14: The server module’s base interface

1 int s t a r t s e r v e r ( const struct c o n f i g ∗ c o n f i g ) ;
2 void s t o p s e r v e r ( void ) ;

The start-function starts the server process, the listening socket information and
certificates are taken from the struct config. There should of course only be
one running server per Phantom-application, not necessarily per Phantom node
though. The stop-function stops the server and with it any network communi-
cation.

In order to dispatch incoming packets to the DHT the server has to know if
the DHT is currently running or not. There are two functions called by the start
and stop functions of the DHT to inform the server of its state. If the DHT is
running and has informed the server process by calling the kad running function,
the server will inspect each incoming connection if it is meant for the DHT and
dispatch it accordingly. 32-bit magic numbers have been randomly chosen that
are stated first on any incoming DHT-connection. According to these numbers,
the server calls the right DHT-functions and does not process this connection
any further in case the DHT-functions return successfully. If they return with
an error, the server tries to interpret the incoming connection as a request by
another Phantom node to participate in the construction of a new routing path
and handles it accordingly. If the DHT is not running, the server will just throw
incoming DHT-packets away. It is critical to inform the server when the DHT is
stopped.

Listing 2.15: The server module’s interface to register or deregister a running
DHT

1 void kad running ( void ) ;
2 void not kad running ( void ) ;

In addition, the Phantom server module offers the functionality to register and
wait for a specific incoming connection, which is needed by the path and tunnel
module. The interface used for this purpose consists of three functions:
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Listing 2.16: The server module’s interface for awaiting connections

1 struct awa i ted connect ion ∗ r e g i s t e r w a i t c o n n e c t i o n ( const char ∗ ip ,
const u i n t 8 t ∗ id ) ;

2 int w a i t f o r c o n n e c t i o n ( struct awa i ted connect ion ∗w, int t imeout ) ;
3 void f r e e a w a i t e d c o n n e c t i o n ( struct awa i ted connect ion ∗w) ;

The register wait connection-function is used to inform the server of an in-
coming awaited connection from another node. The information passed in is used
to identify the connection on arrival. It has to come from a certain IPv4-address
and state a certain 160 bit id. The wait for connection-function is used from a
calling thread to block itself for a certain time until the required connection has
been established or the timeout occurs. At this point the server will have filled
in the connection details into the struct awaited connection and pass control
of the connection on to the calling thread. After the calling thread has received
the information it needed, it should call free awaited connection to free the
connection and related data. If a thread does not want specific members of the
struct to be freed, it can set those pointers to NULL and has to free them by calling
the appropriate functions later. It is important not to send a message to another
node before registering the awaited connection for the reply, in order to avoid
race conditions. Should the other node have replied before the awaited response
connection was registered, the server may just have thrown it away already.

The following code excerpt taken from the path module shows the typical use
of this interface:

Listing 2.17: Sample code for awaiting a connection

1 struct awa i ted connect ion ∗wait ;
2 wait = r e g i s t e r w a i t c o n n e c t i o n ( path−>sps [ path−>nnodes − 2 ] . next ip ,

path−>sps [ path−>nnodes − 1 ] . n ex t id ) ;
3 if ( wait == NULL) {
4 /∗ error ∗/
5 }
6 r e t = send se tup ar ray ( path , con f i g , array , out s i z e , 1) ;
7 if ( r e t != 0) {
8 /∗ error ∗/
9 }

10 r e t = w a i t f o r c o n n e c t i o n ( wait , TMOUT) ;
11 if ( r e t != 0) {
12 /∗ error ∗/
13 }
14 /∗ handle the incoming connect ion and data ∗/
15 f r e e a w a i t e d c o n n e c t i o n ( wait ) ;

First the information identifying the incoming connection is passed to the server.
Then the packet triggering the reply on the other node is sent and the reply
is awaited. After processing, the awaited connection is freed. In order to wait
for another connection with the same details again, register wait connection

would have to be called again.
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The struct awaited connection has the following members, most of them
are for internal use only and should not be used from other modules without fully
understanding their purpose:

Listing 2.18: struct awaited connection

1 struct awai ted connect ion {
2 struct awa i ted connect ion ∗next ;
3 struct awa i ted connect ion ∗prev ;
4 u i n t 8 t id [SHA DIGEST LENGTH ] ;
5 int permanent ;
6 char ∗ ip ;
7 sem t sem ;
8 sem t entry ok ;
9 X509 ∗ i n coming ce r t ;

10 struct s s l c o n n e c t i o n ∗ incoming conn ;
11 u i n t 8 t ∗ incoming package ;
12 u i n t 3 2 t l en ;
13 struct t imespec timeout ;
14 } ;

• id - the awaited id

• ip - the awaited ip

• incoming cert the X509 certificate stated by the connecting node

• incoming conn the incoming SSL-connection

• incoming package the first packet that was stated through the connection
it is not changed by the server but has to be received and inspected to see
if the right id was stated or if it is to be thrown away

• len - the length of the incoming packet

• next, prev - list interface - used internally

• sem - used to block the calling thread in wait for connection - used in-
ternally

• permanent - marks this awaited connection for multiple use if set. This
means multiple connections with the same details are awaited, without
having to reregister the connection - used only internally

• entry ok - used for premanent awaited connections internally. the thread
registering the awaited connection posts on this semaphore to signal it has
gotten the data out of the last awaited connection and the data in the
struct can now be overwritten
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• timeout - the timeout for an awaited connection - used internally

So far for the exported functionality and interfaces of the server module. The
central datastructure of the server module is a statically allocated struct server

which is a module-global variable, so it is easily accessible by all functions inside
the server module. It holds different status information about the whole module,
for example a list of running threads that need to be joined when the server is
stopped, the server’s credentials, etc.

Listing 2.19: struct server

1 struct s e r v e r {
2 struct worker pid p i d l i s t ;
3 struct awai ted connect ion a w a i t e d l i s t ;
4 pthread mutex t awaited mutex ;
5 pthread mutex t worker pid mutex ;
6 const struct c o n f i g ∗ c o n f i g ;
7 int i n i t ;
8 int qu i t ;
9 int kad running ;

10 u i n t 1 6 t port ;
11 const char ∗ ip ;
12 pthread t thread ;
13 int l i s t e n s d ;
14 SSL CTX ∗ ctx ;
15 X509 ∗ c e r t i f i c a t e ;
16 EVP PKEY ∗ pr ivkey ;
17 } ;

Internally the server module handles all kind of traffic and dispatches it to various
other modules. It is also responsible to start the threads which perform the
Phantom node tasks, i.e. they construct paths and tunnels or forward traffic.

The main loop of the server simply waits for an incoming connection, accepts
it and dispatches it to a thread in the thread pool before waiting for the next
connection. The dispatched function is called worker. This function does the
SSL-handshake with the connecting node and gets its certificate. If no client-
certificate is provided, the connection is closed immediately and the function
returns. I have made it a prerequisite that every node participating in the Phan-
tom network must have a valid certificate that is stated with every connection.
If a certificate was provided, the worker reads a packet from the connection. The
contents of this packet are used to decide how to proceed further. If the packet
is prefixed with a DHT-magic number and the DHT is known by the server to be
running, the appropriate DHT-handle function is called and if it returns success-
fully the connection is closed and the function returns. If there is no DHT-magic
number or the handle-function fails (this usually indicates a falsely identified
DHT-packet. i.e. a packet that looks like a DHT-packet but is truly something
else, so the magic number is there only by coincidence) the worker goes through
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the list of awaited connections to see if this new connection is part of a path or
tunnel creation process in progress. If so, there is a thread waiting for this con-
nection and blocked on the semaphore associated with the corresponding struct

awaited connection. The packet and connection details are then inserted into
the struct and the semaphore is posted on. The worker will return. The previ-
ously blocked thread will carry on with the awaited connection and proceed with
the path or tunnel creation. This will be discussed in more detail later on.

If the packet was not awaited and not a DHT-packet it is either invalid or
requests the receiving node’s participation in a new routing path to be. The
worker will then call to the path-module passing in the received packet. The
path-module will decide if the request is valid and process it accordingly. This
process will be discussed in detail later in the description of the path module.
If the packet was not a valid first round package, the connection is closed and
the function returns. Otherwise the worker will read the second round package
from the connection and hand it to the path module again for verification and
processing. If the second round package was also valid, the node now knows the
role it has to play in the routing path. If it is just a Y-node it is not participating
in the finished routing path and all work is done. The worker returns.

If the node is to be an X-node however the become x node function is called
and the required data is passed to it. These are namely the contents of the routing
path setup package and the connections needed for the routing path. These steps
are visualized in figure 2.1.

If the become x node-function is called, the function starts by waiting on the
passed in awaited connection from the previous X-node and receives the X-
package from this node. The connection to the next X-node is then created and
the package is passed along. There are two possibilities now, either the node
is the terminating X-node or an intermediate X-node. The former case will be
discussed soon, in the latter case the X-node spawns two more threads, which try
to read a tunnel initialization package from the neighbouring X-nodes (this has
to be done on both sides, because there is no way of knowing from which side this
package will come. Once one of the threads has received this package, the other
one is canceled and the tunnel creation process is started. The tunnel creation
process and its implementation will be discussed in the description of the tunnel
module. Receiving tunnel initialization packages is done in a loop until one of
the X-node connections is closed down, which closes the path.

If the node is the terminating X-node, another function is called instead of
waiting for tunnel initialization packages. The become tx node-function is again
twofold. If the created path is an entry path, the thread calls upon the netdb-
module to update the routing table information within the DHT in order to
make itself known as the entry node for a certain AP-address. Once this is done,
it starts waiting for incoming entry tunnel creation requests. Here the infras-
tructure to await connections plays a vital role again. Two things are different
though. First the awaiting of entry tunnel requests can come from any IP, and
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Figure 2.1: Flowchart of the worker thread

so the IP to expect is not known in advance and cannot be used for identifying
the package. So the id alone is responsible to identify the incoming connection
as an entry tunnel creation request. Second the connection is not awaited just
once but usually multiple times. That is what the additional members of the
struct awaited connection (marked for internal use before) are used for. If
the permanent-member is true, the struct will not be removed from the awaited
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list once its awaited connection has come but will instead be locked until the
responsible thread (the thread currently discussed) has gotten the required in-
formation and unlocks it again so new information of another incoming request
may be entered by a worker thread. After an entry tunnel creation request has
come, a new thread called entry worker is started which builds the tunnel and
forwards traffic over it afterwards. After the entry worker has been created, the
thread will block again and wait for the next incoming entry tunnel request.

If the terminating X-node is to be an exit node, it tries to read a tunnel
initialization package from the previous X-node (originally initiated by the owner
of the routing path) and spawns an exit worker to create the tunnel and then
relay the traffic through the tunnel.

2.7 Routing paths

The implementation of the routing paths consists mainly of the path module. In
addition there are four other small modules involved. The conn ctx module, the
setuppackage.pb-c module, the node info module and the rc4rand module. I will
first describe the four simpler modules and then the main module.

2.7.1 node info

This is not a module but simply a header file. It declares a struct used for the
internal representation of Phantom nodes during path creation and some flags
which are used in the setup packages to tell the other nodes their role in the path
creation process.

Listing 2.20: struct node info and related defines

1 struct node in f o {
2 X509 ∗ c o n s t r u c t i o n c e r t i f i c a t e ; /∗ path b u i l d i n g c e r t i f i c a t e

∗/
3 struct X509 f l a t ∗ c o n s t r u c t i o n c e r t i f i c a t e f l a t ;
4 X509 ∗ c o m m u n i c a t i o n c e r t i f i c a t e ; /∗ communication

c e r t i f i c a t e ∗/
5 struct X509 f l a t ∗ c o m m u n i c a t i o n c e r t i f i c a t e f l a t ;
6 char ∗ ip ;
7 u i n t 1 6 t port ;
8 u i n t 3 2 t f l a g s ;
9 } ;

10
11 #define X NODE (0 x01 )
12 #define Y NODE (0 x02 )
13 #define T NODE (0 x04 )
14 #define ENTRY NODE (0 x08 )
15 #define SUCCESS FLAG (0 x10 )
16 #define RESERVE AP (0 x20 )
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2.7.2 conn ctx

The conn ctx module mainly declares the struct conn ctx and provides an al-
location and free-function for it. This struct is used mainly by the server module
and stores the relevant information extracted from the setup packages during
path creation. This information is however filled in by the path module since this
is where the validation and extraction of the setup packages happens. That is
why it is described in this section rather than in the server section.

Listing 2.21: struct conn ctx, related structs and functions

1 struct xkeys {
2 int nkeys ;
3 u i n t 8 t ∗keys ;
4 u i n t 8 t ∗ i v s ;
5 } ;
6
7 struct r t e {
8 u i n t 3 2 t l en ;
9 u i n t 8 t ∗data ;

10 } ;
11
12 struct conn ctx {
13 u i n t 8 t p r ev id [SHA DIGEST LENGTH ] ;
14 u i n t 8 t nex t id [SHA DIGEST LENGTH ] ;
15 char ∗ prev ip ;
16 char ∗ nex t ip ;
17 u i n t 1 6 t prev por t ;
18 u i n t 1 6 t next por t ;
19 u i n t 3 2 t f l a g s ;
20 u i n t 8 t ∗ p e e r i d ; /∗ used f o r t e rmina t ing nodes ∗/
21 char ∗ p e e r i p ; /∗ used f o r t e rmina t ing nodes ∗/
22 u i n t 1 6 t pee r po r t ; /∗ used f o r t e rmina t ing nodes ∗/
23 X509 ∗ p e e r c e r t ; /∗ used f o r t e rmina t ing nodes ∗/
24 struct xkeys ∗keys ;
25 struct s s l c o n n e c t i o n ∗ to next ;
26 X509 ∗ p r e v c o m m u n i c a t i o n c e r t i f i c a t e ;
27 X509 ∗ n e x t c o m m u n i c a t i o n c e r t i f i c a t e ;
28 X509 ∗ r o u t i n g c e r t i f i c a t e ;
29 RSA ∗ c o n s t r u c t i o n c e r t i f i c a t e ;
30 /∗ op t i ona l ∗/
31 struct in6 addr ap ;
32 struct r t e r t e ;
33 } ;
34
35 struct conn ctx ∗new conn ctx ( void ) ;
36 void f r e e c o n n c t x ( struct conn ctx ∗conn ) ;

The two small structs declared first represent the keys and ivs used by an X-node
to encrypt the traffic passed along through the tunnels. The rte-struct represents
an already serialized routing table entry as len bytes of data.
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The members of struct conn ctx have the following meaning:

• prev id - the unique id of the previous node in the path

• next id - the unique id of the next node in the path

• prev ip - the ip of the previous node in the path

• next ip - the ip of the next node in the path

• prev port - the port of the previous node in the path

• next port - the port of the next node in the path

• flags - flags which identify the role of a node (these are the flags defined in
the node info module

• peer {id,ip,port,cert} - are only set in terminating X-nodes and point to the
X-node connected to the terminating node, since there is no clear previous
and next node anymore in a finished routing path.

• keys - the xkeys used by an X-node (unused in Y-nodes)

• to next - the connection to the next X or Y node, assuming there is one

• {prev,next} communication certificate - the communication certificates of
the next X- or Y-node

• routing certificate - the routing certificate of the routing path owner

• construction certificate - the construction certificate for this specific path

• ap - the AP-address of the routing path owner (in case of an entry path)

• rte - the routing table entry of the routing path owner (in case of an entry
path)

The free-function frees the struct and its members. If the caller does not wish
certain members to be freed, he can set those pointers to NULL and has to free
them later.
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2.7.3 setuppackage.pb-c

This module is automatically generated by libprotobuf-c which has been described
earlier on. The prototype-file used to generate this module describes four message
types. A dummy setup package consisting of the seed used to generate the pack-
age, its size and flags which describe if the package is to be inserted or deleted.
Second a routing table entry which consists of an AP-address of the anonymized
node and a list of entry node IPs and ports. The setup package-message holds
the contents of a setup package. Last but not least, the setup array-message is
a full setup array passed around during the creation of a routing path. It simply
consists of a number of already serialized setup and dummy packages.

Listing 2.22: Message formats used inside a setup array

1 message dummy setup package {
2 r equ i r ed bytes seed = 1 ;
3 r equ i r ed f i x ed32 s i z e = 2 ;
4 r equ i r ed f i x ed32 f l a g s = 3 ;
5 }
6
7 message r o u t i n g t a b l e e n t r y {
8 r equ i r ed bytes ap address = 1 ;
9 repeated s t r i n g i p a d d r e s s e s = 2 ;

10 repeated f i x ed32 por t s = 3 ;
11 } ;
12
13 message setup package {
14 r equ i r ed s t r i n g p r ev ip = 1 ;
15 r equ i r ed s t r i n g nex t ip = 2 ;
16 r equ i r ed uint32 prev por t = 3 ;
17 r equ i r ed uint32 next por t = 4 ;
18 r equ i r ed bytes p r ev id = 5 ;
19 r equ i r ed bytes nex t id = 6 ;
20 r equ i r ed bytes p r e v c o m m u n i c a t i o n c e r t i f i c a t e f l a t = 7 ;
21 r equ i r ed bytes n e x t c o m m u n i c a t i o n c e r t i f i c a t e f l a t = 8 ;
22 r equ i r ed bytes c o n s t r u c t i o n c e r t i f i c a t e f l a t = 9 ;
23 repeated dummy setup package dummies = 10 ;
24 r equ i r ed uint32 nkeys = 11 ;
25 r equ i r ed bytes key seed = 12 ;
26 r equ i r ed bytes rep lacement seed = 13 ;
27 r equ i r ed bytes k e y s a l t = 14 ;
28 r equ i r ed uint32 f l a g s = 15 ;
29 r equ i r ed bytes hash = 16 ;
30 r equ i r ed bytes ex t e rna l ha sh = 17 ;
31 o p t i o na l bytes ap address = 18 ;
32 o p t i o na l r o u t i n g t a b l e e n t r y r t e = 19 ;
33 }
34
35 message s e tup ar ray { repeated bytes s l o t s = 1 ; }
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2.7.4 rc4rand

The creation of the dummy packages during path creation procedure needs a
deterministic, precalculatable but secure pseudo random number generator. The
openssl-PRNG is not deterministic and can therefore not be used for this purpose.
After implementing the BBS-generator[9] I found it to be much too slow for this
purpose and went with the bit stream generated from a symmetric stream cipher
(RC4) as PRNG. This module implements the RC4-based PRNG used to create
and precalculate the dummy packages given a seed and a salt. The interface is
quite simple and so this module can easily be replaced by some other PRNG. The
PRNG should be well chosen since it cannot easily be altered once the protocol
is used in the real world. The interface to the PRNG is quite simple and should
need no further explanation:

Listing 2.23: The rc4rand module’s interface

1 struct rc4 rand ∗ r c 4 r a n d i n i t ( const u i n t 8 t ∗ seed , int l en ) ;
2 void r c4 rand byte s ( struct rc4 rand ∗ r , u i n t 8 t ∗buf , int l en ) ;
3 void r c 4 r a n d f r e e ( struct rc4 rand ∗ r ) ;

Internally I simply call to the RC4-cipher functions of libopenssl passing all zero
bits as input. Since symmetric stream ciphers work by xoring the input with a
stream of pseudorandom bits (generated predictably and therefore reproducibly
given the starting key and salt), passing zero bits as the input simply gives the
pseudorandom bit stream as the output. These bits are then used as the PRNG’s
pseudo-random bit stream.

2.7.5 path

The path module is the main module of the routing path implementation. It
plans and constructs routing paths. The exported interface is again quite simple:

Listing 2.24: The path module’s interface

1 struct path ∗ co n s t r uc t en t r y pa th ( const struct c o n f i g ∗ c o n f i g ) ;
2 struct path ∗ c o n s t r u c t e x i t p a t h ( const struct c o n f i g ∗ c o n f i g ) ;
3 struct path ∗ c o n s t r u c t r e s e r v e a p p a t h ( const struct c o n f i g ∗ c o n f i g ) ;
4 void f r e e p a t h ( struct path ∗path ) ;
5 u i n t 8 t ∗ h a n d l e f i r s t r o u n d s e t u p a r r a y ( const struct c o n f i g ∗ con f i g ,

const u i n t 8 t ∗ sa , int sa l en , const u i n t 8 t ∗ id , const char
∗ f rom ip , struct conn ctx ∗conn , u i n t 3 2 t ∗ o u t s i z e ) ;

6 u i n t 8 t ∗ hand l e s e cond round se tup ar ray ( const struct c o n f i g
∗ con f i g , const u i n t 8 t ∗ sa , int sa l en , const u i n t 8 t ∗ id , const
struct conn ctx ∗oldconn , struct conn ctx ∗conn , u i n t 3 2 t
∗ o u t s i z e ) ;

The first three functions construct an entry path, an exit path or a special path
which I call AP-reservation path. The AP-reservation path is basically an exit
path that is solely constructed and used to reserve an AP-address from the DHT.
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This is necessary, because the DHT node reserving the AP-address would oth-
erwise know the reservers true identity. The other two functions are used by
the server module in case a possible first or second round setup array has been
received. The server calls these functions to unpack the setup packages and to
validate them. These two functions take a lot of arguments which should be
explained:

• config - a pointer to the struct config

• sa - the packed setup array

• sa len - sa’s length in bytes

• id - the unique id stated by the node along with the setup array

• conn - the connection context to be filled in

• outsize - the size of the new setup array after the modifications on it have
been done

• oldconn - in case of the second round the connection context filled in by
the previous call in the first round

The central data structure for the path module is struct setup path. I will
present this data structure first and then talk about the internal structure and
functions of the module.

Listing 2.25: struct setup path

1 struct setup path {
2 struct node in f o ∗nodes ;
3 u i n t 8 t nxnodes ;
4 u i n t 8 t nynodes ;
5 u i n t 8 t nnodes ;
6 u i n t 3 2 t ∗ s i z e s ;
7 u i n t 8 t ∗∗ contents ;
8 struct setup package ∗ sps ;
9 int c o n s t r u c t i o n c e r t i f i c a t e l e n ;

10 u i n t 8 t ∗ c o n s t r u c t i o n c e r t i f i c a t e d a t a ;
11 u i n t 8 t endhash [SHA DIGEST LENGTH ] ;
12 u i n t 3 2 t entrypath ;
13 struct s s l c o n n e c t i o n ∗ s s l c o n n ;
14 /∗ i s r e v e r s e p a t h == 1 i f we s t a r t wi th many y nodes ∗/
15 int i s r e v e r s e p a t h ;
16 int r e s e r v e a p a d d r e s s ;
17 char ∗ e n t r y i p ;
18 struct in6 addr ap ;
19 RSA ∗ c o n s t r u c t i o n c e r t i f i c a t e ;
20 const X509 ∗ r o u t i n g c e r t i f i c a t e ;
21 struct X509 f l a t ∗ r o u t i n g c e r t i f i c a t e f l a t ;
22 } ;
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• nodes - information of the X- and Y-nodes chosen to participate in the
routing path

• nxnodes - the number of X-nodes in the path

• nynodes - the number of Y-nodes in the path

• nnodes - nxnodes + nynodes

• sizes - the sizes in byte of the setup packages for the chosen nodes

• contents - the packed setup packages

• sps - the unpacked or not yet packed setup packages

• construction certificate len - the length of the construction certificate in
bytes

• construction certificate data - the construction certificate for this path

• endhash - the precalculated hash over the setup array after receiving it from
the last node in the construction process round, including all modifications
and dummy packages

• entrypath - flag set if the struct belongs to an entry path

• ssl conn - the SSL-connection to the first node of the path

• is reverse path - flag set if the circle of nodes constructed during the setup
phase has many Y-nodes in the front8

• reserve ap address - flag set if the path constructed is an address-reservation-
path

• entry ip - the IP-address of the terminating X-node in an entry path

• ap - the AP-address reserved for this this path

• construction certificate - the construction certificate used for this path

• routing certificate - the routing certificate of the anonymized node

• routing certificate flat - and its serialized form

8There are either many consecutive Y-nodes at the front or at the end of a path during the
construction phase.
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The three exported unary path-construction functions are internally mapped
to the same ternary function: static struct path *construct path(const

struct config *config, int want entrypath, int reserve ap). The two
additional flags are used to signal which flavor of a path is to be constructed.
I have chosen this approach, because huge parts of the construction-process are
identical and so it is easier to have some branches taken or not taken depend-
ing on the passed in flags than to implement the three variations independently.
This adds complexity within the functions but reduces the number of code lines
drastically.

The path building process is divided into two parts. First, the planning of the
path and preparation of the setup process, which takes part solely in the node
initiating the construction process. Second, the actual construction of the path,
which mainly consists of passing around setup arrays. The initiating node starts
by creating the struct setup path and filling in the required information. It
therefore queries the DHT for the contact information of other Phantom nodes
until it has the required number of nodes to construct the path. Those contact
information consist of the IP, the port, the communication certificate and the
construction certificate for each selected node and are represented by a struct

node info.
The node then calls the build xy path-function. This function flags the nodes

according to the role they should play in the creation process. If there are more
Y-nodes than those strictly needed by the protocol, they are mixed randomly in
between the other nodes. Finally the order of all the nodes in the path is reversed
randomly with a 50% chance as required by the protocol. The layout of the path
to be is now finished and the planning phase ends.

The next step is to prepare the setup array. This is done by first generating
the path-construction-key as a new RSA key-pair. This key-pair is solely used
for a single path. The generate setup packages-function fills in the required
information for the setup package for each node. It generates random seeds for
the xkeys to be used in later tunnels and the dummy package creation process,
if required. Additionally it fills in the previous node’s and next node’s contact
information, unique id and the path construction keys. All that is missing now
is the information and precalculation of the dummy packages and modifications
carried out by each participating node. These precalculations are rather tedious
and I came up with an alternate method to do this than the one proposed in the
original design. This will be discussed later in more detail.

With all this information composed, the setup array consisting of the packed
setup packages can now be created. The setup packages itself can be serialized
using libprotobuf-c. The protocol requires however for the individual packages
to be symmetrically and asymmetrically encrypted, signed and to carry a hash
over the full setup array in its expected state of arrival at each node within its
setup package. These requirements make the generation of the setup array a hard
process. In order to be able to insert the hash of the expected state of arrival
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for the setup array as a whole, the setup array has to be packed backwards (i.e.
starting with the slot in the array that corresponds to the last node receiving the
array, then its previous node and so on).

The packing process for each setup package starts by adding the expected
hash of the state of arrival into the setup package. The setup package is then
packed (with its own hash set to all zero bytes), the resulting bytes are then
hashed again and this hash is filled into the setup package as its own hash.
The package is then repacked (because the new hash has been entered) and the
previously packed version is thrown away. The package is asymmetrically en-
crypted with its construction certificate and signed with the private construction
key of the anonymized node to be. Since asymmetric cryptography is expen-
sive, the encryption is done using an enveloping technique. The package itself
is encrypted using a symmetric cipher whose key is encrypted asymmetrically
with the recipients public key. The asymmetrically encrypted symmetric cipher
key is then prepended to the message along with the symmetric ciphers iv. The
recipient recovers the symmetric key by decrypting it asymmetrically using its
private key and then decrypts the package itself using the symmetric cipher with
given key and iv. The symmetric cipher’s key and iv are prepended to the actual
setup package. The described triple is then encrypted symmetrically using the
recipient’s preprocessor’s unique id as a symmetric key. Finally the iv for this
encryption is prepended to the package again. All resulting data is then signed
with the path owners private key and the signature prepended. The length of the
RSA-signature is currently for 2048-bit certificates. If a different size or mixed
size certificates should be used by the protocol, the length of the signature should
be prepended. Once the slots have all been serialized in the described way, they
are packed as as a message consisting of a number of (byte, length) pairs using
libprotobuf-c. The unique id expected by the first node is prepended and the
total length of the setup package data and unique id prepended again as a 32-bit
big endian value. The “wire format” for a full setup array can be seen in figure
2.2.

The initiating node registers the awaited connection on which the setup array
will return to him and sends the data to the first node in the setup chain. The
unpacking and modification actions taken by each node along the way will be
discussed a little further down in this section. After the path owner has received
the array back, it hashes it and checks to see if it is in the expected state. If so, a
second round setup array is created in very much the same way as the first round
setup array and sent away again. If the second round setup array is also received
in the expected state after passing through all the other nodes, the X-package is
sent as described in the paper to finish the construction process.

When a setup array is received by a node’s server, it calls to the path module
for verification, unpacking and extraction of the setup package and receives the
extracted information in a struct conn ctx.
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Figure 2.2: Wire format of a full setup array and an example slot

The path module starts the verification process by splitting the received chunk
back into individual slots. It then tries to find its own package candidate by
symmetrically decrypting the slots with the stated unique connection id. If the
symmetric decryption is successful can not be decided before the padding at the
end of the package has been decrypted. After successfully decrypting a package,
it tries to open the enveloped asymmetrically encrypted setup package itself. If
the contents can be successfully recovered, the setup package is unpacked and
the contents are checked if they are complete. The internal hash of the package
is then set to zero, the package is repacked and the hash is compared to make
sure the contents have not been modified. To make sure the right package has
definitely been found, further checks are made. The connection id, stated by the
sending node is compared to the expected one from the setup package. Next the
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IP from which the connection was initiated is checked to see if it matches the
previous IP from the setup package. If so, the array is hashed in full (excluding
our own setup package slot) to make sure it has not been tampered with by a
previous node. If all these checks are successful, the setup packages contents are
extracted into a struct conn ctx and the node, now knowing its role, decides if
it wants to participate in the path being constructed. If it participates, it modifies
the setup array according to the instructions received within the setup package,
repacks it and sends it along to the next node, which will go through the same
process again. The servers thread dealing with this connection will block and try
to read the second round setup array from the connection. Once it arrives, it is
checked by the path module in very much the same way as the first round setup
array. The main difference in the second round is that the RSA-signature is now
also checked using the construction certificate passed along in the first round,
and it is checked if the SUCCESS FLAG is set in the flags of the second round setup
package.

The result of a successful path construction process is a newly constructed
entry or exit path ready to create the first tunnel over it. The information needed
for tunnel creation are passed out to the caller in a struct path:

Listing 2.26: struct path

1 struct path {
2 u i n t 8 t nkeys ;
3 struct xkeys ∗∗ xkeys ;
4 int i s e n t r y p a t h ;
5 struct in6 addr ap ;
6 struct s s l c o n n e c t i o n ∗conn ;
7 u i n t 8 t p e e r i d [SHA DIGEST LENGTH ] ;
8 char ∗ p e e r i p ;
9 u i n t 1 6 t pee r po r t ;

10 } ;

The members of the struct have the following meaning:

• nkeys - the number of xkeys available at the X-nodes in the path

• xkeys - the xkeys themselves

• is entrypath - flag set if the path is an entry path

• ap - the AP-address reserved for this path

• conn - the SSL-connection to the first X-node in the path

• peer id - the unique id used for the communication between the anonymized
node and the first X-node during path creation

• peer {ip, port} - the port and IP of the first X-node in the path
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2.8 Routing tunnels

The Routing creation is mainly implemented in the tunnel and server module.
Tunnels can only be constructed once a path has been successfully constructed.

2.8.1 tunnel

The tunnel module exports five functions to be used by other modules and an
additonal five functions used by the server module:

Listing 2.27: The tunnel module’s interface

1 struct tunne l ∗ c r e a t e t u n n e l ( struct in6 addr ∗ap , const struct path
∗path ) ;

2 struct tunne l ∗ awa i t en t ry tunne l ( const struct in6 addr ∗own ap ,
struct in6 addr ∗ remote ip , const struct path ∗path , const struct

c o n f i g ∗ c o n f i g ) ;
3 int tunne l r ead ( struct tunne l ∗ t , u i n t 8 t ∗buf , int num) ;
4 int t u n n e l w r i t e ( struct tunne l ∗ t , const u i n t 8 t ∗buf , int num) ;
5 void f r e e t u n n e l ( struct tunne l ∗ t ) ;
6 /∗ needed by s e r v e r ∗/
7 struct tunne l ∗ c r e a t e a p r e s e r v a t i o n t u n n e l ( const struct path

∗path ) ;
8 struct tunnel dummy package ∗ create tunnel dummy package ( const

u i n t 8 t ∗ r ece ived , const struct conn ctx ∗conn ) ;
9 u i n t 8 t ∗ dec ryp t tunne l b l o ck ( const struct tunnel dummy package ∗dp ,

const u i n t 8 t ∗data ) ;
10 int e x t r a c t e x i t i n i t r e p l y p a c k a g e ( const u i n t 8 t ∗ r ece ived , struct

in6 addr ∗ap ) ;
11 int e x t r a c t e n t r y i n i t r e p l y p a c k a g e ( const u i n t 8 t ∗ r ece ived ,

u i n t 3 2 t ∗ f l a g s ) ;

The create tunnel-function is used to create a new outgoing tunnel to the
passed-in AP-address over an exit path. The await entry tunnel-function pro-
vides a way to wait for an incoming tunnel over an entry path. The free tunnel-
function shuts down a previously constructed tunnel and frees its allocated re-
sources. The read and write functions are used to read to and write from a tunnel.
They handle the onion encryption and decryption. So the data written to the
write-function on one end of the tunnel is identical to the data received by a call
to the read-function on the other end of the tunnel.

The result of a successful tunnel creation process is a struct tunnel:

Listing 2.28: struct tunnel

1 struct tunne l {
2 int nkeys ;
3 int i s e n t r y t u n n e l ;
4 pthread t t i d ;
5 int qu i t ;
6 EVP CIPHER CTX ∗ ec tx s ;
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7 EVP CIPHER CTX ∗dctxs ;
8 struct s s l c o n n e c t i o n ∗conn ;
9 } ;

• nkeys - the number of xkeys. Once a tunnel has been successfully created
the xkeys will have been stored within the cipher contexts listed below, so
there are no struct xkeys necessary anymore

• is entry tunnel - flag set if the tunnel is an entry tunnel

• tid - used by the frontend implementation, not strictly part of a tunnel

• quit - used by the frontend implementation, not strictly part of a tunnel

• ectxs, dctxs - the cipher contexts used for the onion en- and decryption
of this tunnel, the contexts are updated by calls to the tunnel read and
tunnel write functions.

• conn - the SSL-tunnel-connection to the first X-node in the routing path

During the implementation of the routing tunnels, I did not encounter many
problems, so I will not discuss it here broadly. It is implemented exactly as
described in Magnus’ paper. I have chosen the size of the tunnel initialization
and dummy packages as 48 bytes. It is the smallest multiple of the chosen cipher’s
block size providing enough room for the contents that need to be transported
in this packages as shown in figures 2.3 and 2.4. The remaining bytes are used
to store the first bytes of the SHA-1 hash over the contents for verification. This
are 8 bytes for an entry tunnel and 16 bytes in case of an exit tunnel. The crypto
initialization block consists of two 32 bit integers a and b. a is chosen at random
and b is chosen as ¬a (its logical inverse). This makes it possible to quickly
check if the brute-forcing step has successfully recovered the used xkeys. For
exit tunnels this initialization block is doubled, because there was space available
inside the package and this further reduces the chance of false positives during
the brute force phase.

Content size (bytes)
crypto key initialization block 2 * 4
ip address of connecting node 16

AP-address of the node to connect to 16
part of SHA-1 hash over the previous contents 8

total 48

Figure 2.3: Data transported for an entry tunnel
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Content size (bytes)
crypto key initialization block 4 * 4

AP-address of the node to connect to 16
part of SHA-1 hash of the previous contents 16

total 48

Figure 2.4: Data transported for an exit tunnel

2.9 Distributed kademlia-like hash table

Compared to the other two parts of the original protocol-description, the descrip-
tion of the distributed hash table is rather vague and generic. After doing a bit
of reading, I found the kademlia design as proposed by Petar Maymounkov and
David Mazieres[11] suitable.

2.9.1 The kademlia design

Kademlia is a communications protocol for peer-to-peer networks and can be
used to implement a DHT. A specific implementation is characterized mainly by
three parameters:

• α - used to describe the degree of parallelization in RPC-calls (3 in my
implementation, which seems to be optimal[3])

• B - the size in bits of the unique id used to identify nodes and pieces of
data (160 in my implementation - the length of a SHA-1-hash)

• k - the maximum number of contacts stored in a bucket (20 in my imple-
mentation)

A kademlia network consist of cooperating nodes which exchange and store data
and communicate with each other. Each node is identified by a quasi-unique
B-bit id called the node id. Pieces of information stored in the DHT are also
identified by an B-bit id called its key. Data is stored and searched for at the
nodes nearest to the data’s key. To decide if a key is more or less distant from
a node id, a metric is needed. Kademlia uses the xor-metric for this purpose,
which is defined as follows:

The distance between two ids x and y is the result of the operation x⊕ y (x
xor y) interpreted as a big endian binary number of length B. This means if two
nodes are close to each other the most significant bits of the resulting distance
vector will be zero, i.e. the resulting number will be small.

Each kademlia node organizes the contacts known to it in B buckets, each
having up to k entries. These buckets are called k-buckets. The k-buckets are
organized by the distance between the node’s id and the contact’s id, If the node
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ids differ first in the n-th bit, the node is inserted into bucket n. The following
code snippet taken from the kademlia module shows how this is implemented.
own id is the nodes own id, the passed in id is the contacts id. logs is a 256-
byte table holding the floored binary logarithms for the values 0 – 255. The
function returns the index of the k-bucket the new contact has to be stored in or
-1 if the passed in id is the node’s own id, which should theoretically not happen.

Listing 2.29: The bucket idx function

1 static int
2 bucket idx ( const u i n t 8 t ∗ id )
3 {
4 int i , tmp ;
5 for ( i = 0 ; i < 160 >> 3 ; i++) {
6 if ( ! (tmp = id [ i ] ˆ kad−>own id [ i ] ) ) {
7 continue ;
8 }
9 return 160 − ( ( i + 1) << 3) + l o g s [ tmp ] ;

10 }
11 return −1;
12 }

Furthermore contacts are sorted within the buckets by the time of the most recent
successful communication with them.

To prevent Sybil attacks[4], I require each node’s node id to be the SHA-1
hash over its serialized communication certificate. Sybil attacks are possible if
a node can choose its node id freely and therefore position itself at or near a
specific position within the overlay network. For example an attacker could try
to remove certain data from the DHT by clustering fake nodes around the data
(i.e. nodes with node ids near to the data’s key) and then accept every incoming
store request but never return the data stored if requested to do so.

The kademlia protocol specifies four rpc messages:

• ping - used to see if a node is still alive

• store - to store data at a specific node

• find node - to find a node given a specific key

• find value - to find data given a specific key

I have decided to implement the kademlia design not via UDP but with SSL-
connections. So the DHT traffic is also encrypted and since it uses the Phantom
server who expects all incoming traffic to be SSL, it made integration a lot easier.

In the original kademlia design all rpc messages have to carry a quasi-unique
id that is repeated in the reply to make it possible for the sender of the rpc
call to match an incoming reply to an outstanding request. By using TCP as
the underlying transport protocol, this is no longer necessary since the reply can
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simply be sent back via the already established connection that was used to send
the request.

Three of the four kademlia rpcs are implemented as rpcs within the kadem-
lia rpc module. Ping is not implemented as a rpc. A successful ping in my
implementation is done by creating an SSL-connection to the ping target and re-
questing its communication certificate. If the stated certificate matches the node
id the ping is successful.

The other three rpcs are required to work as follows: the sender of the store
rpc sends a key and a block of data to the recipient and asks for it to be stored
for later retrieval. The find node rpc includes a B-bit key. The recipient then
returns up to k contact informations which are the closest it knows to the key.
The node may return only less than k contacts if it returns all the nodes within
its k-buckets. A find value rpc includes also a B bit key and the recipient replies
either with the data belonging to the key if he has it in his local store or handles
the find value rpc as a find node rpc on the given id. All this operations are
primitive.

The procedure finding the k closest nodes for a given id is described as recur-
sive in the original kademlia paper. It is in fact iterative and works as follows:

1. Select up to α contacts from the closest non-empty k-bucket responsible for
the id into a shortlist

2. If fewer than α contacts are within this k-bucket, add other contacts

3. note the closest node found so far as closest-node

4. Send parallel find value or find node rpc requests to those nodes

5. Remove dead contacts from the shortlist

6. Improve the shortlist with the nodes returned by the find node rpc by
adding the closer contacts to it

7. update closest-node

8. Repeat the sequence of parallel searches until either no node closer to id
than closest-node is returned by any of the α contacted nodes or the
shortlist holds k probed and valid contacts

9. If the operation requested was a find value operation and data has been
returned, return the data to the caller. If not, return the k nodes from the
shortlist.

This algorithm is called iterative-find node and is the core routine used to im-
plement the DHTs functionality. The store-operation does an iterative-find node
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first and then sends a primitive store rpc to the k returned nodes. The find node
and find value operations use the algorithm as is.

The kademlia design also describes certain rules for data expiration and re-
freshing, since I have not implemented these I will not discuss them here.

2.9.2 Kademlia module overview

DHT-design and implementation is not for the faint of heart and since a good
design and choice of a DHT-model is crucial for the success of the Phantom
protocol, this part of the implementation definitely needs improvement and a lot
of more work which simply was beyond the scope of my thesis. So what I have
implemented works to a certain point and makes the implementation of the rest
testable and usable in a controlled environment. Nonetheless I will discuss my
basic implementation here and the problems with it will make up a good part of
the later problems section.

My implementation consists of six modules. The main module implementing
the algorithms and logic of the kademlia design is the kademlia module. The
kademlia rpc-module contains the functions processing rpc calls made by the
DHT to other Phantom nodes using the protobuf-c messages from the automat-
ically generated kademlia.pb-c-module. netdb provides the interface and some
glue code used to communicate with the DHT from the modules which do not
belong to the DHT-implementation. Finally the diskcache module provides a
simple way to store the data inserted into the DHT on a participating nodes
disk.

2.9.3 diskcache

The diskcache module is mainly for testing. It simply stores the data on a given
directory at disk, using its key as a filename. The data can also be retrieved. I am
not describing this module in detail because it should be rewritten and changed
to something better suited.

2.9.4 kad contacts

This module implements the functionality to save contacts to disk and to restore
them. Some initial contact has to be provided if the DHT is started for the
first time in order to make it possible to contact another node to help with the
bootstrapping process of kademlia. The module exports two functions used by
the main kademlia module:
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Listing 2.30: The kad contacts module’s interface

1 int s a v e c o n t a c t s ( const char ∗ f i l ename , struct kad tab l e ∗ t a b l e ) ;
2 int r e s t o r e c o n t a c t s ( const char ∗ f i l ename , struct kad node in fo

∗ contac t s ) ;

The first function serializes the contacts in a simple way and stores them on disk
to the given file, the kad table is part of the kademlia main module and holds the
contacts known by the node. It will be described later on. The second function
can be used to restore the contacts from this file. They are passed out to the
caller as a list in the contacts-parameter.

2.9.5 Kademlia

The kademlia module implements the kademlia logic and algorithms and declares
the central datastructures. Those are the struct kad node info, the struct

kad table and the struct kad.

Listing 2.31: struct kad node info

1 struct kad node in fo {
2 struct kad node in fo ∗prev ;
3 struct kad node in fo ∗next ;
4 u i n t 8 t id [SHA DIGEST LENGTH ] ;
5 X509 ∗ c e r t ;
6 X509 ∗pbc ;
7 u i n t 1 6 t port ;
8 struct t imespec l a s t s e e n ;
9 char ∗ ip ;

10 int ponged ;
11 sem t sem ;
12 } ;

The struct kad node info is the datastructure representing the contact infor-
mation of a kademlia-contact as well as the information needed from a node to
use it in Phantom’s path-building process. The members of the struct are the
following:

• prev, next - kad node info structs can be collected into a list

• id - the node id of the contact

• cert - the communication certificate of the contact

• pbc - the path building certificate of the contact

• port - the listening port of the contact’s Phantom server

• last seen - timestamp when the last sucessful communication with this con-
tact took place
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• ip - the contacts IPv4 address

• ponged, sem - used internally by the ping thread (discussed later)

The struct kad table represents the k-buckets:

Listing 2.32: struct kad table

1 struct kad tab l e {
2 struct kad node in fo buckets [NBUCKETS] ;
3 int e n t r i e s [NBUCKETS] ;
4 struct t imespec l a s t a c t i o n [NBUCKETS] ;
5 pthread mutex t bucket mutexes [NBUCKETS] ;
6 } ;

• buckets - the buckets itself. A bucket is implemented as a list of kademlia
contacts

• entries - the number of entries for each bucket (i.e. the number of contacts
in it)

• last action - timestamp for when a contact in this bucket was last commu-
nicated with

• bucket mutexes - one mutex for each buckets used to synchronize operations
on the underlying list

The most important structure is the struct kad which puts it all together. How
the members are used in detail will become obvious during the discussion of the
modules internal implementation.

Listing 2.33: struct kad

1 struct kad {
2 struct kad tab l e ∗ t a b l e ;
3 struct ping nodes ∗ping ;
4 struct d i sk cache ∗ cache ;
5 const struct c o n f i g ∗ c o n f i g ;
6 u i n t 8 t own id [SHA DIGEST LENGTH ] ;
7 struct updates updates ;
8 int qu i t ;
9 NodeInfo s e l f ;

10 struct thread t h r e a d l i s t ;
11 char ∗ n o d e f i l e ;
12 } ;

• table - the kademlia table presented above

• ping - list of nodes enqueued for the ping rpc
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• cache - the diskcache used to store data

• config - the config of the Phantom application

• own id - the node’s node id

• updates - holds contacts which need to be entered into the k-buckets

• quit - flag set if the kademlia module has been asked to shut down

• self - the node’s own contact information in protobuf-c form

• thread list - list of running threads within the module

• nodefile - the file where the contact information are stored

Once the kademlia module is started, it creates a struct kad along with all
its members and starts two threads called the ping-worker and the update-worker.
It then calls into the server module to register itself as ready and running and
tries to join the DHT. The procedure for joining the network is quite simple.
First the previously stored contacts are retrieved using the kad contacts module.
One by one, the node tries to send these contacts find node rpc messages for its
own id, which is a quick way to get to know some other nodes near to it. If the
first of these rpc-calls returns successfully it has joined the DHT.

A third thread is then spawned called the housekeeping-worker. The house-
keeping-worker iterates over the k-buckets in certain intervals and refreshes their
contents if the last action seen on the bucket is longer than KAD T REFRESH
seconds in the past. Refreshing a bucket is accomplished by calling iterative find
node on a randomly generated id falling into the buckets range. Since all buckets
will be refreshed shortly after joining the DHT, a certain number of new and
valid contacts should soon be available for the node to work with.

The update-worker is responsible for inserting contacts into the k-buckets. It
waits on a semaphore inside struct updates until another thread relays an up-
date request for it. Contact information should be updated whenever a rpc-call
was made to another node successfully. Updates can simply be relayed using the
update table relay-function, this function clones the passed contact informa-
tion inserts it in a list and posts on the semaphore the update-worker is blocked
on. The update worker will then perform the following action:

1. Wait on updates-semaphore

2. Dequeue the first element of the update list

3. Get the bucket index for it

44



4. Iterate over the bucket’s contents to see if the contact is already in the
bucket. If so, timestamp this contact and insert it as the first element of
the bucket list. Upate the last action timestamp on the bucket and goto
1.

5. Check if the bucket already holds k entries. If not, insert the contact at the
head of the bucket’s list, increment the nentries counter. Timestamp the
last action timestamp and the contacts last seen timestamp, then goto
1.

6. If the bucket was full, remove the current list head of the bucket list and
give it to the ping worker to see if it is still alive.

7. Wait for the ping-worker’s reply.

8. If the old list head was still alive keep it, if not exchange it with the new
contact. Timestamp the bucket. Goto 1.

The ping-worker is responsible for pinging nodes, to see if they are still alive.
It works similar to the update-worker. It has a list containing ping-requests and
a semaphore to block on if no work is to be done. If a ping request has been
relayed, the thread will establish an SSL-connection to the other node and get
its certificate. If the hash over the certificate is matching the node’s node id,
the contact is considered valid and ponged successfully. If not, it has not ponged
successfully. The result of the ping process is made available to the requestor via
the original request struct.

The kademlia module exports the following functions to other modules. Some
are intended to be used only from within other modules implementing the DHT
functionality others are for the rest of the Phantom application also:

Listing 2.34: The kademlia module’s interface

1 /∗ i n t e r f a c e f unc t i on s f o r kademlia ∗/
2 int s t a r t k a d ( const struct c o n f i g ∗ c o n f i g ) ;
3 void stop kad ( void ) ;
4 int kad s to r e ( u i n t 8 t ∗key , u i n t 8 t ∗data , u i n t 3 2 t l en ) ;
5 int kad f ind ( const u i n t 8 t ∗key , u i n t 8 t ∗∗data , u i n t 3 2 t ∗ l en ) ;
6 struct k a d n o d e l i s t ∗ get n nodes ( int n) ;
7 void f r e e k a d n o d e l i s t ( struct k a d n o d e l i s t ∗ l ) ;
8 void g e t f r e e a p a d d r e s s ( struct in6 addr ∗ap ) ;
9

10 /∗ Functions needed from other kademlia modules ∗/
11 int l o c a l f i n d ( const u i n t 8 t ∗key , u i n t 8 t ∗∗data , u i n t 3 2 t ∗ l en ) ;
12 int l o c a l s t o r e ( const u i n t 8 t ∗key , const u i n t 8 t ∗data , u i n t 3 2 t

l en ) ;
13 struct k a d n o d e l i s t ∗ g e t k c l o s e s t n o d e s ( const u i n t 8 t ∗ id , const

u i n t 8 t ∗ r eque s to r ) ;
14 struct kad node in fo ∗ new kad node in fo ( const u i n t 8 t ∗ id , const

char ∗ ip , u i n t 1 6 t port , X509 ∗ cert , X509 ∗pbc ) ;
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15 void f r e e k a d n o d e i n f o ( struct kad node in fo ∗n) ;
16 void u p d a t e t a b l e r e l a y ( const struct kad node in fo ∗n) ;

The start and stop functions bring the kademlia module up and register it with
the server module as running or shut it down and deregister it. The store and
find functions are used to store data to or retrieve data from the DHT. The
get n nodes-function restores n contacts to other Phantom nodes collected from
the k-buckets. Its main use is getting nodes to use in a path creation process.
These nodes can then be freed using the free kad node list-function. The
get free ap address-function is used to reserve an unused AP-address for a
newly created path. This is currently not much more than a stub, because the
DHT (as said above) is not fully implemented.

The local-{find, store}-functions provide a way to store data to and re-
trieve data from the diskcache. The get k closest nodes-function returns the
k closest contacts for a given id, without the contact whose node id is passed in
requestor. update-table-relay is used to relay a node to the update-worker
as described before, this function is called from the kademlia rpc module after
a rpc-call has been handled successfully. The two functions not mentioned are
used to create or free a struct kad node info as the need arises.

2.9.6 kademlia.pb-c

The kademlia.pb-c module is autogenerated via protobuf-c from the following
descriptions:

Listing 2.35: The DHT rpc-message formats

1 message node in f o {
2 r equ i r ed bytes id = 1 ;
3 r equ i r ed uint32 port = 2 ;
4 r equ i r ed bytes c e r t = 3 ;
5 r equ i r ed bytes pbc = 4 ;
6 r equ i r ed s t r i n g ip = 5 ;
7 } ;
8
9 message s t o r e {

10 r equ i r ed bytes key = 1 ;
11 r equ i r ed bytes data = 2 ;
12 r equ i r ed node in f o s e l f = 3 ;
13 } ;
14
15 message s t o r e r e p l y {
16 r equ i r ed bool s u c c e s s = 1 ;
17 } ;
18
19 message f i n d c l o s e n o d e s {
20 r equ i r ed bytes id = 1 ;
21 r equ i r ed node in f o s e l f = 2 ;
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22 } ;
23
24 message f i n d c l o s e n o d e s r e p l y {
25 repeated node in f o nodes = 1 ;
26 } ;
27
28 message f i n d v a l u e {
29 r equ i r ed bytes key = 1 ;
30 r equ i r ed node in f o s e l f = 2 ;
31 } ;
32
33 message f i n d v a l u e r e p l y {
34 r equ i r ed bool s u c c e s s = 1 ;
35 repeated node in f o nodes = 2 ;
36 o p t i o na l bytes data = 3 ;
37 } ;

The most important message is the node info message. It is the protobuf-
equivalent to the struct kad node info and is used to send contacts from one
node to the other. The other three messages are for the find value, find node
and store rpcs. Each message has a request and a reply form. Along with the
request, a node sends its own contact, so it can be entered into the k-buckets of
the node receiving the rpc-call via update table relay. The ping-rpc call has
no message because it is not implemented as a rpc.

2.9.7 kademlia rpc

The kademlia rpc module exports three functions for the kademlia rpc-calls.
These three functions have nearly the same interface. They all return a struct

rpc return holding the result of the rpc-call back to the caller. As their argu-
ments they take the id, or the data and its length (in case of store), needed for
the procedure, the contact information of the node to connect to, the credentials
for creating the SSL-connection to this node and their own contact information.
The returned struct can be freed by a call to free rpc return once the needed
information has been extracted by the caller.

In addition, three functions are exported to be used by the server module to
handle incoming rpc-requests. The server will call these functions as described
in 2.6.1.

Listing 2.36: The kademlia rpc module’s interface

1 struct rp c r e t u rn {
2 int s u c c e s s ;
3 int nnodes ;
4 struct kad node in fo ∗nodes [KADEMLIA K ] ;
5 u i n t 3 2 t l en ;
6 u i n t 8 t ∗data ;
7 } ;
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8
9 struct rp c r e tu rn ∗ rp c f i nd no de ( u i n t 8 t ∗ id , const struct

kad node in fo ∗n , X509 ∗ cert , EVP PKEY ∗privkey , NodeInfo ∗ s e l f ) ;
10 struct rp c r e tu rn ∗ r p c f i n d v a l u e ( u i n t 8 t ∗key , const struct

kad node in fo ∗n , X509 ∗ cert , EVP PKEY ∗privkey , NodeInfo ∗ s e l f ) ;
11 int r p c s t o r e ( u i n t 8 t ∗key , u i n t 8 t ∗data , u i n t 3 2 t len , const

struct kad node in fo ∗ s t o r e t o , X509 ∗ cert , EVP PKEY ∗privkey ,
NodeInfo ∗ s e l f ) ;

12 void f r e e r p c r e t u r n ( struct rp c r e t u rn ∗ r ) ;
13
14 int hand l e rpc f i nd node (SSL ∗ from , X509 ∗ cert , u i n t 8 t ∗package ,

int s i z e ) ;
15 int h a n d l e r p c f i n d v a l u e (SSL ∗ from , X509 ∗ cert , u i n t 8 t ∗package ,

int s i z e ) ;
16 int h a n d l e r p c s t o r e (SSL ∗ from , X509 ∗ cert , u i n t 8 t ∗package , int

s i z e ) ;

The three handle-functions are passed the SSL-context from the incoming con-
nection and the matching certificate, as well as the packets received by the server
via the connection. They start by trying to extract the received packet as a
rpc-message using libprotobuf-c. If this succeeds, the message is validated and if
found OK, the kademlia module is called to fulfill the request. For example to
find nodes close to a given id or store data. A reply packet containing the result
of the requested operation is generated and sent back over the SSL-connection.
The connection is then closed and the requestor’s contact information is relayed
to the update-worker. The return value of these functions provided to the server
module is always successful if the packet could be unpacked sucessfully - since
the server only cares about if the received packet was indeed a kademlia request
or not.

2.9.8 netdb

The netdb module implements the interface to the DHT as described in the
Phantom paper. It can be seen as glue code between the main Phantom im-
plementation and the DHT. Changing the DHT implementation therefore only
requires changes to small parts of the server module and this module.

Listing 2.37: The netdb module’s interface

1 int r e g i s t e r my node in the ne twork ( char ∗ ip , u i n t 8 t
∗ communica t i once r t i f i c a t e , u i n t 8 t ∗ p a t h b u i l d i n g c e r t i f i c a t e ) ;

2 int e x t e n d a p a d d r e s s l e a s e ( struct in6 addr ∗ ap address , u i n t 8 t
∗ s i g n e d l e a s e r e q u e s t , u i n t 8 t ∗ r o u t i n g c e r t i f i c a t e ) ;

3 int r e s e rve new ap addre s s ( const struct c o n f i g ∗ con f i g , struct
in6 addr ∗ap ) ;

4 int u p d a t e r o u t i n g t a b l e e n t r y ( const struct in6 addr ∗ ap address ,
struct r t e ∗ s i g n e d r o u t i n g e n t r y , u i n t 1 6 t port , u i n t 8 t
∗ r o u t i n g c e r t i f i c a t e ) ;
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5 int get random node ip addre s s e s ( char ∗∗ addresses , u i n t 1 6 t ∗ports ,
X509 ∗∗ co mmun i ca t i on c e r t i f i c a t e s , X509
∗∗ p a t h b u i l d i n g c e r t i f i c a t e s , int num) ;

6 int g e t e n t r y n o d e s f o r a p a d d r e s s ( char ∗∗∗ i p addr e s s e s , u i n t 1 6 t
∗∗ ports , int ∗num, const struct in6 addr ∗ ap address ) ;

The first two functions are not implemented because the DHT lacks support
for these operations. The reserve new ap address-function creates an AP-
reservation-path and one tunnel over it which is used to reserve an AP-address.
The AP-address reservation itself is implemented in the main kademlia module
and is only a stub returning a valid but random AP-address. update routing -

table entry makes the reserved AP-address known to the DHT, get entry -

nodes for ap address can then be used by other nodes to retrieve this infor-
mation. The id for this piece of data is the SHA-1-hash of the AP-address in
binary form. get random node ip addresses is used by the path module to get
the required information of a number of other Phantom nodes required for path
construction.

2.10 Integration/frontend

To test the prototype implementation, I have programmed a frontend for Linux
machines. By using the Linux tun/tap interface, the integration was straight-
forward. The tun interface provides a virtual network interfaces at OSI layer
three. It is therefore possible to send arbitrary IP-frames over the Phantom
network which are then dispatched by the kernel to the right application. All
higher level protocols using the IP-protocol should therefore be compatible with
the prototype.

The frontend consists of a tun-device which has at least one reserved AP
assigned as its IP and a corresponding route set. Creating the tun-device requires
superuser-privileges. I have written a small shell script which creates a tun-
device and changes the permissions on it so that the user running the Phantom
protocol can communicate with the device. Furthermore adding and deleting IP
(in this case AP) addresses and routes needs superuser privileges too. Since it
does not seem like a good idea to have a prototype implementation running as
a privileged user, I have instead written a small daemon which has to run as
superuser and accepts requests from the main Phantom application to add or
remove addresses from the tun-device and to set the routes on the tun-device.
This technique is called privilege separation and makes it possible for the main
Phantom application to run as a non privileged user.
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2.10.1 phantomd

The phantomd module is used for privilege separation. It sets and removes IP
(AP) addresses on the tun-device, accepting request from the main Phantom
application. The communication interface between the two processes is a unix
domain socket. The messages itself have been kept as simple as possible. There
are two kinds of messages. One requesting to add a new AP-address to the tun
device and one requesting the removal of a previously set AP-address. Phantomd
will try to process the request after some basic validation and answer with a
message signalizing success or failure of the requested operation to the requestor.
The message format is shown in 2.5 and 2.6.

1 byte either ’a’ or ’d’ 16 byte AP-address to set or delete

Figure 2.5: Request message format for phantomd

The request message is always exactly 17 bytes long. The first byte is either
’a’ for adding an address or ’d’ for removing an address. The remaining bytes
are the 16 byte AP-address.

1 byte either ’0’ or ’1’

Figure 2.6: Reply message format for phantomd

A ’1’ signalizes failure - the operation was not performed, a ’0’ signalizes
success.

2.10.2 addr

The addr module communicates with phantomd by sending the messages de-
scribed in the previous subsection and receiving the reply messages. It exports
two self explaining unary functions, each taking a previously reserved AP-address
as its argument:

Listing 2.38: The addr module’s interface

1 i n t s e t addr ( s t r u c t in6 addr ∗addr ) ;
2 i n t de l addr ( s t r u c t in6 addr ∗addr ) ;

2.10.3 tun

The tun module is the most important part of the frontend. Given an exit or
entry path, it creates tunnels over it as required and forwards traffic over them.
The exported interface consists of two functions:
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Listing 2.39: The tun module’s interface

1 s t r u c t tun dev ∗ s t a r t f o r w a r d i n g ( s t r u c t path ∗path , const s t r u c t
c o n f i g ∗ c o n f i g ) ;

2 void s top fo rward ing ( s t r u c t tun dev ∗ t ) ;

After successfully constructing an entry or exit path it should be handed to the
start forwarding-function which will take care of the tunnels and communica-
tion running via this path as explained below. The stop forwarding-function is
used to shut down all tunnels and stop the communication along the path. In the
current implementation (which is mainly for testing and simple demonstration)
only one path should be created by each Phantom node. Since the tun module is
implemented with the assumption that it is the only user of the tun-device. Later
it would be desirable to have multiple paths. Communication to the tun-device
will then have to be synchronized between the different path instances and their
tunnels.

The start forwarding-function starts one thread responsible for reading
IPv6-frames from the tun-device. A blocking read from the tun-device will ei-
ther fail or block and return one full IPv6-frame as soon as one is available. If
a packet has been received from the tun-device, the thread extracts its destina-
tion address (the AP-address of another Phantom node). It maintains a list of
previously created tunnels and sends the packet to the matching tunnel if one
such tunnel exists. If no tunnel can be found and the underlying path is an
entry path, the packet is thrown away. If the underlying path is an exit path it
will try to create a new tunnel over it to the stated AP-address by calling the
tunnel modules create tunnel-function. If the tunnel was created successfully,
the tunnel is entered into the list of running tunnels and the packet is dispatched
into it. Since tunnels are bidirectional, for each tunnel created a reader-thread is
spawned which reads IPv6-frames coming from the tunnel and writes the frames
to the tun-device. Since multiple tunnels can exist and therefore also multiple
reader-threads, these writes have to be synchronized. The format for transporting
IPv6-frames through a tunnel is shown in 2.7.

If the path passed to the start forwarding-function is an entry path, an-
other thread is spawned in addition to the reader-thread. This threads waits for
incoming tunnels via the tunnel module’s await entry tunnel-function. If an
entry-tunnel has arrived, it spawns a thread (running the same function as for
exit-tunnels) to read packets from the tunnel and write them to the tun-device.
Before doing so, the tunnel is entered into the tunnel list, so the reader thread for
this path can find it there after reading the first reply frame logically belonging
to the incoming connection from the tun-device and can successfully dispatch it
back. The next incoming tunnel is awaited immediately after this.

The design using the tun-device has two main advantages. First, it works
on the IP-layer which makes it possible to relay arbitrary IP-traffic through the
Phantom network. This is basically all and every protocol used via the Internet.
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Second, the packets are injected into the kernel’s IP-stack by the tun-device and so
the kernel or applications using the Phantom network handle everything related
to higher protocol levels, the Phantom implementation itself does not have to
care about it.

32 bit big endian frame-size IP-frame

Figure 2.7: Format of an IP-frame send through a tunnel

2.10.4 main

This module is very simple and strictly for testing. The main function sanitizes
the environment, blocks SIG PIPE, reads the configuration file, brings up and ini-
tializes the other modules. It prepares the locks needed for libopenssl, initializes
its PRNG and starts the Phantom server as well as the DHT. If everything comes
up successfully, it creates an exit or entry path at random, prints the reserved
AP-address for it and starts the start forwarder-function of the tun module.
This makes testing and demonstration of the implementation very simple using
tools like cluster-ssh 9.

2.11 Things not implemented

2.11.1 Non anonymized participation

The Phantom protocol design makes it possible for members of the Phantom
network to join without anonymization by being their own entry or exit node
if they wish to do so. This functionality is not implemented. The prototype
implementation requires every participant in the network to have a routing path
of at least length one.

Implementing this functionality should however not pose a big problem.

2.11.2 DHT

As indicated in the previous section, the DHT is not fully implemented. What
is there is basically enough to make the implementation testable, however a lot
is still missing. First of all, a lot of thought has to be put into deciding which
specific design would be most suitable to meet Phantom’s requirements. It is not
said at all that kademlia is the most suitable one of the existing designs or that
it may be required to think of a whole new design.

Data in the DHT should be organized within tables, there is no such thing
in the prototype yet. The only data stored within the DHT so far is the contact

9http://sourceforge.net/projects/clusterssh/
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information for AP-addresses, i.e. the contact information of their entry nodes.
The key for this data is the SHA-1 hash of the AP-address.

Since the DHT has to reserve AP-addresses for nodes, it needs to have some
means of global synchronization as to not give out the same AP-address twice.
Currently I simply select an AP-address at random and hope that there will not
be conflicts. This showed to be sufficient for testing purposes.

In short, most of the DHT, better all, should be reimplemented and before
doing so thought and discussed about a lot by good researchers with both good
knowledge of DHT designs and a good understanding of the Phantom protocol.
I found this to be out of scope of my diploma thesis.

2.12 Problems

2.12.1 Dummy package creation

The most important requirement of a dummy package used during routing path
construction is not to be distinguishable from a real setup package destined for
another node. A setup package is however not simply a lump of arbitrary data
of arbitrary size but has certain properties that should also be resembled by a
dummy package. Assuming that setup packages look from the outside like random
data with a certain size, creating this data with a good determinstic PRNG is
OK. The sizes of dummy packages however have to be chosen in a way to match
those of the setup packages. Setup packages can have different sizes depending on
their contents, not all sizes must be valid though. In my current implementation I
choose the size of a dummy package as the size of another randomly selected setup
package within the array. This is probably not optimal. Since the best solution
of how to create dummy packages depends on the format of setup packages in
the final protocol implementation it can not be decided upon yet, but is a topic
to keep in mind.

2.12.2 Deallocation of tunnels

Since tunnels are created on demand and do not care about the protocol tun-
neled via them as long as it is IPv6, there is no way of knowing if a tunnel is
no longer used and can be deallocated. At the moment I am therefore not deal-
locating created tunnels at all until they are either shut down explicitly or one
of the underlying paths breaks down. For tunneled TCP connections it would
be possible to inspect the packets for FIN-flags and shut down a tunnel once the
TCP-connection has come to an end. This would however mean, that a tunnel
is only ever used for one logical connection or even more information has to be
tracked. This is also not possible for other protocols like UDP and therefore
seems like the wrong way to go.
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A possibility would be to timestamp tunnels every time a packet is received
or sent through them and expire (deallocate) them after some timeout. If the
connection was not really dead at this point, it would be possible to simply create
a new tunnel if another packet belonging to this connection is received from the
tun-device. This is at least possible if the underlying path is an exit path.

2.12.3 Missing AP-address for exit nodes

The original design does not stipulate AP-addresses for exit paths. The imple-
mentation of the forwarding via tun-devices however is a lot simpler if the exit
node has also an AP-address from the Phantom AP-range. So I have decided to
also give exit paths an AP-address.

2.13 Deviations from the original design

Due to the problems discussed in the previous section, I have chosen to deviate
from the original design in two main points. First, I have changed and greatly
simplified the way the setuparray is hashed and precalculated during routing
path construction. Second, I have decided that not only entry nodes but also
exit nodes should have an AP-address. This simplifies the tunneling of arbitrary
IP-traffic via Phantom a great deal.

2.13.1 Verification and precalculation of setup arrays

The precalculation of the setup arrays is a crucial point to avoid piggybacking any
information during path creation. If an attacker can piggyback any information
during path creation, this could improve his chances to coordinate an attack to
break or weaken the anonymity of the protocol.

This process is however very tedious, time consuming and I have failed twice
when trying to implement it correctly. So I came up with a different solution.
The hash over the setup array is not calculated across the array as a whole but
across the individual slots within the array instead. These hashes are then xored
and the result of this operation is the hash of the array.

This means the order in which the slots in the array are hashed is no longer
important, which greatly simplifies the calculations. It however makes it possible
to piggyback information of some kind. An attacker can rearrange the slots
within the array freely and therefore transport information. He can for example
hide information by ordering the slots in a way that the first bit in each slot
concatenated gives information. This can even be improved. To weaken this
possibility I require each node to randomly mix the slots in the array before
sending it to the next node. So if there are valid nodes in between two attacker
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nodes the information will be destroyed. This is still a lot weaker than the original
design, and should be subject to further research.

2.14 Further improvements

I have thought of various further improvements to the implementation, however
this project is only a diploma thesis and so I did not find time to implement all
the cool stuff that came to mind. In addition there are some improvements that
are obligatory if the prototype should be used in the wild.

The next subsections are roughly sorted by descending urgency and then by
ease of implementation. They can be seen as possible starting points for anyone
willing to improve the prototype implementation.

2.14.1 Getting rid of the ping thread

The ping thread (or ping worker) within the kademlia module is useless. The
only one relaying ping-requests to it is the update worker. The update worker
thread could just ping the nodes himself and therefore render the ping worker
superfluous. It should be thrown out.

2.14.2 Getting rid of cleanup stack macros

When implementing the prototype I found it tedious to have most lines of code
I wrote followed by a check for some error condition and then a list of free or
cleanup calls in the unlikely event that there was an error. So I tried to solve
the problem with some macros. If some resource is allocated it can be pushed
on a stack together with a free-function. If the resource is no longer needed it
can be popped from the stack which causes the unary free-function to be called
on the resource. In case of an error, there is a cleanup-all macro, deallocating all
resources pushed on the stack within the current function. It made some code
easier, but overall is not a good solution and I stopped using it after a while but
have not yet found time to get it out of the code in every place. The two main
problems with this approach were firstly that it allocates a large chunk of stack
space for each function it is used in and that wastes memory, secondly, due to the
implications of Rice’s theorem[5] it is not possible to predict exactly how often
a loop is executed. So if the push function is called within a loop, there may
not be enough space available on the stack if it is called too often. Dynamically
reallocating the needed space is not an option, since this reallocation can fail, too,
and then one would have to handle this error again, not using these macros. The
second reason makes this instrument a very bad choice for this implementation.
To get rid of it should be easy but it takes some time to go through the code and
change the deallocation of allocated resources in case of an error.
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2.14.3 DPRNG used for dummy package creation

The deterministic random number generator used for the creation of dummy
packages should probably be exchanged with another, better implementation. It
has to be kept in mind though, that the main purpose of this PRNG is not to
produce excellent random numbers but to produce a data stream reflecting the
properties of a packed and encrypted setup package. Producing good random
numbers should be good enough for this theoretically but, maybe not in practice.

2.14.4 Setup array precalculation

If my method presented in 2.13 should be found inferior to Magnus’s originally
prpoposed method, it should be changed to match the original method.

2.14.5 Exchange protobuf-c

I am pretty sure it is possible to piggyback additional information within libpro-
tobuf messages without the library complaining about it. Since the piggybacking
of information must be made impossible under all circumstances, libprotobuf-c is
not the right choice to use here. I have chosen it anyway, because writing own se-
rialization and deserialization routines is cumbersome and takes time, especially
if the message format is changed from time to time during the early stages of
implementation. Once the message format is relatively stable, own serialization
and deserialization functions for the messages should be written along with very
strict checking and validation functions. This is a lot of work, yet it is listed early
on in this section, as failing to do so will make it possible to break Phantom’s
anonymity and that would just render the whole implementation useless in the
first place.

2.14.6 Participation decision

The current implementation for deciding if a node wants to participate in a
path construction process is just a dummy, always returning true. Arbitrary
complex decision processes could be implemented here to decide if a node wants
to participate. Normally the only valid factor should be if the node has enough
ressources to support another path and a number of tunnels over it. Interesting
factors for this would include usage of CPU, memory or bandwidth.

2.14.7 Selection of X- and Y-nodes

The possibility to select X- and Y-nodes for constructing a path is one of the great
advantages of the Phantom design. The current implementation simply takes the
first n nodes returned by the netdb module. There are a lot of possibilities to
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strengthen Phantom’s anonymity by selecting those nodes carefully. An example
would be to select X-nodes in a way that they are most probably in different
jurisdictions or countries using GeoIP-services. Another way to select the nodes
could be by setting up a web of trust similar to the one used by GnuPG10, where
nodes are preferred if they have a high trust ratio, provide high bandwidth or
have a high uptime and provide stable service. A blacklist could be implemented
where the user can blacklist nodes if he finds them supsicious for some individual
reason. Many more schemes come to mind and implementing some of them or
combinations of them is an interesting option to put the possibilities provided by
Magnus’ design to good use.

2.14.8 IPv6 support

Currently the implementation uses IPv6 addresses for AP-addresses and only
IPv4-addresses for normal communication. Implementing IPv6 support for nor-
mal communication would be a nice feature. IPv6 is coming and applications
should be ready for it, the sooner the better. Since Phantom cannot work easily
through network address translation and NAT is deprecated when using IPv6
Phantom would benefit greatly if IPv6 would be more widespread.

2.14.9 Getting rid of system in phantomd

The interface provided by Linux to add or delete routes or addresses on a network
interface is called netlink. The interface is horribly complex and confusing, at
least if one has no experience using it. I had none, so after trying for three days to
get the interface to do what I wanted, I had a look at other opensource projects to
see how they handle this stuff. The interface does not seem to enjoy widespread
use and most other projects use the libc function system to call on the ip utility.
I decided to do the same. This is however not good style and system is known for
causing problems, so this should be changed, preferably by someone comfortable
with the netlink interface.

2.14.10 Better use of the thread pool-module

I have implemented the thread pool module once I was halfway done with the
implementation. Therefore it is used only within the server module. The ad-
vantages of having a thread pool discussed in 2.5.4 could also be used in other
modules. So modules using threads should be checked to see if they can make
use of the thread pool implementation and if so, be changed to use it.

10http://www.gnupg.org
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2.14.11 Poll on SSL-sockets

Using poll on SSL-sockets poses a problem. The poll system-call checks only if
there is data available from the kernel for the userland, it has no way of knowing
if this data is meant for libopenssl or the application using the library. So if the
application tries to see if there is data available on the socket, poll will not block
and tell that there is some data available, even so this data is only data concerning
libopenssl. The application will then fail to get the data and maybe use poll

again, with the same implications. This causes a poll-storm, similar to busy
waiting. To get around this problem, I am using blocking SSL-read and write
functions instead of polling the socket directly. This however further increased
the number of threads necessary to run Phantom, which seems unnecessary.

If there is a way to use poll together with libopenssl it should be found,
implemented and put to use.

2.14.12 Dynamic module support

For various things discussed in this section, some kind of loadable module sup-
port would be great. For example, a user could decide in which way he wants
to select X and Y nodes by choosing from a set of community provided mod-
ules implementing these functions. Different user groups will have different needs
and adapting to this needs can be made easier if potential user groups could im-
plement these needs themselves, encapsulated in some kind of loadable module
programmed against a clean and easy to use interface. This would make it easier
on users to match Phantom to their needs without having to put all that code
inside the Phantom core application, making it more complex. I would suggest
using the dynamic linking loader’s dlopen interface for this. Module functional-
ity could be implemented as a set of functions with a fixed signature and then
provided as a dynamic library file.

2.14.13 Different ciphers, hashes and DPRNGs

Some people may not be comfortable with my choice of ciphers, hashes and the
DPRNG used to create dummy packages. For them it would be nice if the ciphers
they wish to use for their traffic going through Phantom or for constructing their
routing paths could be changed. This would make it necessary to contain infor-
mation about the ciphers used within the setup packages. If the setup packages
themselves should be encrypted with different algorithms it might be possible to
implement a three-round path construction process, Where the first round sends
a default package with the flags signaling which ciphers and hashes to use for
the setup process. The second round would then become the normal first round
(with other ciphers) and the third round the normal second round. It would also
be possible that not all nodes support all kinds of hashes or ciphers, the contact
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information within the DHT could then be updated to contain a list of crypto-
graphic routines supported on this node. For the onion encryption it would even
be feasible to have different ciphers on different X-nodes.

Implementing this functionality in this or some other way would also make it
possible to easily update the Phantom implementation to use new cryptographic
routines should the old ones be broken or considered insecure in the future.

2.14.14 Overall stability

The overall stability of the implementation has to be improved. This means there
should be careful reviews of the code for bugs and correctness issues. There should
be a number of rigorous testcases to protect from unforeseen consequences when
changing some part of the code. This prototpye is nowhere near being ready
for production use and for a protocol like Phantom that some people may be
tempted to trust with their lives making it ready can not be accomplished by a
single person, certainly not during a diploma thesis. Having said this clearly, I
hope a community, interested in my work and the Phantom protocol will form and
help to shape and expand the prototype into a usable protocol implementation.
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Chapter 3

Evaluation

For Evaluation purposes I did some measurements on two sets of machines A
and B. The machine’s specifications are listed in 3.1. All test machines were
connected via a 100Mbit switched network. Measured values in this chapter are
in seconds.

Type A Type B

CPU AMD Opteron 148 @ 2.2 GHz Intel Core 2 Quad Q6600 @ 2.40 GHz
RAM 1024 MiB 8192 MiB
NIC Nvidia CK804 Gigabit Ethernet Intel 82566DM-2 Gigabit Ethernet

Figure 3.1: Technical data for test machines

3.1 Path creation

The timings for the path creation process were taken as the time of a full successful
run if the construct entry path or construct exit path-function. Since these
functions also create a second path and a single tunnel over it to reserve an AP-
address, this is actually the timing for two path creation processes and one tunnel
creation process. So the time to create a single path should be roughly half or
slightly less than the times measured in 3.2, 3.3, 3.4 and 3.5. The path creation
processes all used three X-nodes and twelve Y-nodes.

The mean, variance, standard deviation, minimum and maximum of the mea-
surements are l isted in 3.6.

Path creation takes roughly between two and seven seconds using todays
machines. This is however on a local 100 Mbit network. Via the Internet times
will probably be higher due to bandwidth limitations and greater latency between
nodes. The reason for the differences in times is probably how long it took the X-
and Y-nodes to find their individual setup packages within the arrays and how
many dummy packages they had to create. As expected the type B machines
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Figure 3.2: Times for construct exit path on type A machines
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Figure 3.3: Times for construct exit path on type B machines
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Figure 3.4: Times for construct entry path on type A machines
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Figure 3.5: Times for construct entry path on type B machines
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3.2 3.3 3.4 3.5
Mean 3.318674 2.769496 3.317035 2.724664

Variance 0.582186 0.316752 0.443819 0.279035
Standard deviation 0.763011 0.562807 0.666197 0.528237

Minimum 2.132818 1.811392 2.108837 1.736680
Maximum 6.669100 4.776687 5.554295 4.271500

Figure 3.6: Further evaluation of the path creation measurements

can profit from their better specifications. This could be further exploited by
parallelizing dummy package creation and finding the setup package inside the
setup array.

3.2 Tunnel creation

The main time for tunnel creation is spent by the owner node trying to brute
force the combination of xkeys used along a newly created tunnel. The formula
for the maximum number of key combinations possible given the number of X-
nodes N and the number of xkeys for each node x is: xN . Since the keys are
chosen at random, one can expect to find the right combination in half the time
needed to try all the combinations. I have measured the times for 100 tunnel
creation brute force attempts on paths using three or four X-nodes with 15 or
30 xkeys each. The results can be seen in 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13 and
3.14. The number of combinations, mean, maximum and minimum values are
listed in 3.15.

If we assume 100 measured values are enough to calculate a good mean, we
could estimate that the time used to bruteforce one combination is roughly 2.04
us on type A machines and 1.5 us on type B machines. The system clock’s
granularity kept me from getting usable values from direct measurements.

These times could be improved by writing specialized bruteforcing functions
using for example SSE-instructions to test multiple key-combinations at once or
by exploiting thread-level parallelism. The search space can be divided trivially
and so a big number of CPUs could be used to do the brute forcing. The ex-
pected speed-up would be roughly the number of CPUs used minus the time
used to divide the searchspace and start/join the threads. As expected, the type
B machines outperformed the type A machines during these tests, even so the
prototype’s bruteforcing implementation is not parallelized.
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Figure 3.7: Brute forcing 15 xkeys on a path of 3 X-nodes on type A machines
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Figure 3.8: Brute forcing 15 xkeys on a path of 3 X-nodes on type B machines

65



0

0.01

0.02

0.03

0.04

0.05

0.06

0 20 40 60 80 100

ti
m

e
[s

ec
on

d
s]

value number

Values

+

+

+

+

+

+

+

+

+

+

+

+

+

+
+

+

+

++

+

+

+

+

+

++

+

++

+

+
+

++

+

+

+

+

+

+
+

+

+

+

+

+

+

+

++

+

++

+

+
+

+
+

+

++

+

++

+

+

+

+
+

+

+

+

+

+
+

+

+

+

+

+

+
+

+

+
+

+

+

+

+

++

+

+

+

+

+

+

+
+
+

+
Min
Max

Figure 3.9: Brute forcing 30 xkeys on a path of 3 X-nodes on type A machines
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Figure 3.10: Brute forcing 30 xkeys on a path of 3 X-nodes on type B machines
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Figure 3.11: Brute forcing 15 xkeys on a path of 4 X-nodes on type A machines
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Figure 3.12: Brute forcing 15 xkeys on a path of 4 X-nodes on type B machines
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Figure 3.13: Brute forcing 30 xkeys on a path of 4 X-nodes on type A machines
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Figure 3.14: Brute forcing 30 xkeys on a path of 4 X-nodes on type B machines
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3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14
Combinations 3375 3375 27000 27000 50625 50625 810000 810000

Mean 0.003589 0.002932 0.028479 0.021476 0.055166 0.041735 0.827930 0.593491
Minimum 0.000064 0.000068 0.001012 0.001775 0.000062 0.002628 0.003547 0.009626
Maximum 0.009748 0.005832 0.053188 0.042704 0.100077 0.082332 1.559712 1.276336

Figure 3.15: Further evaluation of brute force measurements

3.3 Throughput

Finally I measured the throughput via a precreated tunnel. For these measure-
ments an exit and an entry path, consisting of three X-nodes each, have been
used. So the total path length between the two owner nodes was six. I did three
sets of measurements, the round trip time for 1024 bytes of data (3.16, 3.17),
the round trip time for 8192 bytes of data (3.18, 3.19) and finally the time to
transmit 100 MiB of data from the exit path owner to the entry path owner(3.20,
3.21). The mean, variance, standard deviation, minimum and maximum values
for these measurements can be seen in 3.22.
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Figure 3.16: 1 KiB round trip time on type A machines

Two interesting observations can be made from the round trip time measure-
ments. First the weaker type A machines performed a little better than the type
B machines. Second the first measured value is a lot larger than the other values
who are very close to the mean. This is probably because libopenssl is doing some
initialization for the cipher contexts on each node when the first data arrives over
the tunnel.
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Figure 3.17: 1 KiB round trip time on type B machines
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Figure 3.18: 8 KiB round trip time on type A machines
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Figure 3.19: 8 KiB round trip time on type B machines
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Figure 3.20: 100 MiB transmit time on type A machines
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Figure 3.21: 100 MiB transmit time on type B machines

While transmitting 100 MiB from the exit path owner node to the entry
path owner the theoretical throughput limit of the underlying 100 Mbit network
seemed to be the limiting factor on both machine types. The theoretical through-
put limit for a 100 Mbit network is 12.5 MiB/s. This includes however overhead
like ethernet, TCP and IP headers which sum up to 110 bytes per ethernet frame
transmitted in the current setup. In the best case each ethernet frame trans-
mitted carries a measured payload of 1426 bytes of data and has a size of 1526
bytes. On a totally free and perfect network I would expect to see 8589 ether-
net frames per second carrying a combined payload of roughly 11.68 MiB/s. In
practice this value is even further reduced by interframe gaps, which require the
ethernet device to be silent for 96 bit times after each ethernet frame. Deducting
the interframe gaps leaves a payload of 11.58 MiB/s. Further deductions have to
be made for CSMA/CD after collisions, TCP flow control and TCP congestion
avoidance. Additionally processing the data in each node through onion encryp-
tion and decryption causes delays. The measurements show values of 10.74 MiB/s
for the type A machines and 10.75 MiB/s for the type B machines. Both types
of machines were not at their CPU-capacity limit by far which shows that the
prototype implementation can achieve very high bandwith saturation.
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3.16 3.17 3.18 3.19 3.20 3.21
Mean 0.006468 0.008886 0.021360 0.021696 9.306352 9.293772

Variance 0.000346 0.000359 0.000216 0.000238 0.009677 0.012260
Standard deviation 0.018591 0.018945 0.014703 0.015415 0.098370 0.110723

Minimum 0.004321 0.006856 0.019419 0.019801 9.093342 9.067965
Maximum 0.190223 0.196437 0.166353 0.174300 9.626617 9.798135

Figure 3.22: Further evaluation of throughput measurements
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Chapter 4

Outlook

I have shown that the Phantom protocol design is implementable. I have also
encountered and discussed problems with the design and my implementation
and proposed further improvements. I have pointed out where more research
is needed. The prototype is nowhere near being ready for productive use, for
various reasons discussed in this thesis, but it has come one step further through
my work.

Magnus and I are currently looking at good licensing options for the prototype
implementation and will release it under a license we see fit soon. Hopefully a
community interested in the Phantom protocol will form and find my work helpful
in bringing Phantom to the real world.

The prototype implementation will probably not be the basis for the final
implementation of Phantom, but I hope it will help in making Phantom the new
de facto anonymization standard used worldwide.
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